

Thorsten Cziharz
Peter Hruschka
Stefan Queins
Thorsten Weyer

Handbook of Requirements
Modeling According to the
IREB Standard
Education and Training for
IREB Certified Professional for Requirements Engineering Advanced
Level "Requirements Modeling"

Version 1.3 August 2016

Translated from German by:

Ed van Akkeren, Lars Baumann, Jan Jaap Cannegieter, Colin Hood,
Peter Hruschka, Matthias Lampe, Ellen Leutbecher, Hans van Loenhoud,
Piet de Roo, Stefan Staal, and Johan Zandhuis

The compilation of this handbook was supported by

https://www.sophist.de/en/start/
https://sse.uni-due.de/en/welcome/

Terms of Use

1. Any individual or training provider may use this handbook as a basis for seminars provid-
ed that the copyright holders are acknowledged and the source and owner of the copyright
is named. In addition, this handbook may be used for advertising purposes with the consent
of the IREB.

2. Any individual or group of individuals may use this handbook as a basis for articles, books,
or other derived publications provided that the authors and the IREB are credited as the
source and owners of the copyright.

This work, including all its parts, is protected by copyright. Use of the document is permit-
ted—where this is not permitted explicitly—by copyright law only with the consent of the
copyright owners. This applies in particular to reproductions, adaptations, translations, mi-
crofilming, storage and processing in electronic systems, and public disclosure.

Thanks

Our thanks to Torsten Bandyszak, Sibylle Becker, Nelufar Ulfat-Bunyadi, Ruth Rossi,
Tracy Duffy, and Stefan Sturm for their support in the preparation of the manuscript.

This handbook was produced by (in alphabetical order):
Thorsten Cziharz, Dr. Peter Hruschka, Dr. Stefan Queins, and Dr. Thorsten Weyer

Copyright © 2016 "Handbook of Requirements Modeling According to the IREB Standard" is
with the authors listed. Rights are transferred to the IREB International Requirements Engi-
neering Board e.V.

Table of Contents
1 Basic Principles ... 1

1.1 The Benefits of Modeling Requirements .. 1

1.2 Applications of Requirements Modeling .. 2

1.3 Terms and Concepts in Requirements Modeling .. 2

1.4 Requirements Models .. 3

1.5 Views in Requirements Modeling ... 6

1.6 Views of the Dynamic View in Requirements Modeling ... 8

1.7 Adapting Modeling Languages for Requirements Modeling... 9

1.8 Integrating Textual Requirements in the Requirements Model 10

1.9 Documenting Dependencies between Model Elements ... 10

1.10 The Benefits of Requirements Modeling .. 11

1.11 The Quality of Requirements Models .. 12

1.12 Further Reading ... 14

2 Context Modeling .. 15

2.1 Purpose .. 15

2.2 Context Diagrams .. 15

2.3 Other Types of Context Modeling .. 18

2.4 Further Reading ... 18

3 Information Structure Modeling ... 19

3.1 Purpose .. 19

3.2 Modeling Information Structures .. 19

3.3 Simple Example .. 20

3.4 Modeling Classes, Attributes, and Data Types .. 20

3.5 Modeling Relationships ... 29

3.6 Modeling Generalizations and Specializations ... 36

3.7 Other Modeling Concepts ... 38

3.8 Further Reading ... 39

4 Dynamic Views ... 41

4.1 Dynamic Views of Requirements Modeling .. 41

4.2 Use Case Modeling ... 41

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements 48

4.4 State-Oriented Modeling of Requirements .. 61

4.5 Further Reading ... 78

5 Scenario Modeling .. 79

5.1 Purpose .. 79

5.2 Relationship between Scenarios and Use Cases .. 80

5.3 Approaches to Scenario Modeling... 80

5.4 Simple Examples of a Modeled Scenario .. 81

5.5 Scenario Modeling using Sequence Diagrams .. 83

5.6 Scenario Modeling with Communication Diagrams ... 91

5.7 Examples of Typical Diagrams in the Scenario View ... 91

5.8 Further Reading ... 95

Glossary ... 97

List of Abbreviations ... 103

References ... 105

iv

IREB CPRE Advanced Level Module
"Requirements Modeling"

In recent years, the scope and complexity of typical software-based systems have increased
significantly. This is reflected directly in the number of requirements arising and the com-
plexity in terms of the mutual dependencies between requirements. All forecasts about the
expected future increase in the size and complexity of software-based systems predict that
the number of requirements and the complexity of interdependencies will continue to in-
crease dramatically in the future. This becomes clear, for example, if we consider the devel-
opment trends in the field of business information systems in terms of the Internet of Ser-
vices (IoS) and Internet of Things (IoT) or the development in the field of intelligent embed-
ded systems. Both trends are paving the way for a somewhat revolutionary penetration of
the physical world by dynamic networked software-based systems, referred to as "cyber-
physical systems".

The first thing to note is that requirements are taking a central role in the development pro-
cess of software-based systems. What is more, the extent and complexity of the require-
ments of a system are becoming more difficult to handle. Accordingly, the specification of
requirements has already reached its limits in many areas if this is done only in natural lan-
guage (i.e., in text form). In many cases, this has a lasting negative effect on the development
projects concerned. Due to the many advantages of using graphical models with respect to
readability, controlling complexity, automatic analyzability, and the processing of extensive
and complex situations, the use of graphical modeling of requirements is increasing rapidly.

The IREB Certified Professional for Requirements Engineering advanced level module "Re-
quirements Modeling" provides the tools for specifying requirements of large and complex
systems using standardized and widely used modeling languages. Comprehensive tool sup-
port is available for these modeling languages—from freeware tools to powerful commercial
CASE tools, there is great potential for automation and for seamless integration with other
tools used in development processes (e.g., for project and test management).

More information on the IREB Certified Professional for Requirements Engineering ad-
vanced level module "Requirements Modeling" can be found at: http://www.ireb.org.

http://www.ireb.org/

v

Foreword

This Handbook of Requirements Modeling according to the IREB Standard complements the
syllabus of the International Requirements Engineering Board for the advanced level module
"Requirements Modeling" Version 2.0 of September 2015.

This handbook is intended for training providers who want to offer seminars on require-
ments modeling according to the IREB standard, as well as for training participants and in-
terested practitioners who want to get a detailed insight into the subject matter of this ad-
vanced level module and in requirements modeling according to the IREB standard.

This handbook is not a substitute for a training on the subject. Instead, it represents a link
between the syllabus (which merely lists and explains the learning objectives of the module)
and the wide range of literature that has emerged on the topic of requirements modeling in
recent decades.

The contents of this handbook, together with references for more detailed literature, sup-
port training providers in focusing on preparing training participants for the certification
exam. This handbook provides training participants and interested practitioners with the
opportunity to deepen their knowledge of requirements modeling and to supplement the de-
tailed content based on the literature recommendations. In addition, this handbook is in-
tended as a reference for refreshing the knowledge gained about the various topics of re-
quirements modeling following successful certification.

Suggestions for improvements and corrections are always welcome!

E-mail contact: requirementsmodeling.guide@ireb.org

We hope that you enjoy studying this handbook and successfully pass the certification exam
for the IREB Certified Professional for Requirements Engineering advanced level module
"Requirements Modeling".

 Thorsten Cziharz (Sophist GmbH)

 Peter Hruschka (Atlantic Systems Guild)

 Stefan Queins (Sophist GmbH)

 Thorsten Weyer (paluno - The Ruhr Institute for Software Technology)

Autumn 2015

mailto:requirementsmodeling.guide@ireb.org

Version History
Version Date Comment

1.1 September 2015 First release of the English version of the handbook based on

the original German version (1.0). Contains some minor changes

compared to the original German version v1.0.

1.2 May 2016 Minor bugfixing and language polishing.

1.3 August 2016 Content on the topic “modeling of association classes” added

and minor corrections.

1

1 Basic Principles

Requirements play a fundamental role in the life cycle of systems. In particular, the various
development disciplines (such as architecture, design, implementation, and testing) are
based mainly on the requirements of the system as specified during requirements engineer-
ing and are largely dependent on the quality of these requirements. In addition to the devel-
opment disciplines, activities such as maintenance and service right up to decommissioning
of the system and development of upstream activities (e.g., assessment of the risks and costs
of the development project) depend highly on the requirements and their quality.

According to the IREB Glossary of Requirements Engineering Terminology [Glin2011], a re-
quirement is (1) a need that is perceived by a stakeholder or (2) a capability or property that
a system must have. Requirements engineering is concerned with ensuring that the re-
quirements of the system under development are formulated as completely, correctly, and
precisely as possible, thereby providing optimal support for the other development disci-
plines and activities in the life cycle of the system.

1.1 The Benefits of Modeling Requirements

Using a highly simplified example, Figure 1 shows the difference between textual and mod-
eled requirements. The left-hand side shows four textual requirements which specify neces-
sary behavior in relation to the input of data via an entry screen. The right-hand side shows
a requirements diagram in which the corresponding requirements are modeled.

Req-1: The system shall display the entry
mask

Req-2: After the action "Show entry mask"
is completed, or after the action "Show
error" is completed, the system shall offer
the user the option to enter data

Req-3: After the action "Enter data" is
completed and if the data is ok, the system
shall store the data

Req-4: After the action "Enter data" is
completed and if the data is not ok, the
system shall issue an error message

Textual requirements Modeled requirements

Display entry
mask

Enter data

Issue error
message

Store data

Figure 1: Textual requirements vs. modeled requirements

As this simple example already indicates, modeling the requirements shows the necessary
behavior of the system in a more structured and understandable way. The reader can follow
the process step by step. Furthermore, this simple example clearly shows that the interac-
tion of the various aspects of the required system behavior are explicitly visible in the mod-
eled requirements, whereas this information is only implicitly present in the textual re-
quirements (see also [Davi1993]). Typically, software systems today comprise significantly
more complex processes, meaning that the associated textual requirements are very exten-
sive and complex. It is then difficult for the reader to understand the interactions within
such complex processes solely on the basis of textual requirements.

2 Basic Principles

1.2 Applications of Requirements Modeling

Today, there are various applications for modeling requirements in requirements engineer-
ing, as explained in this section.

1.2.1.1 Modeling Requirements as a Means of Specification

In this case, requirements diagrams replace textually specified requirements. This means
that requirements diagrams are used as the primary means for specifying the system re-
quirements or part of the system requirements. The requirements diagrams can (and
should) be supplemented by textual requirements or textual explanations, specifically when
a text is more compact or easier to handle than diagrams. If all requirements still need to be
available in textual form (e.g., due to contractual conditions or certification requirements),
they can be generated from the requirements models—for example, using templates for
converting requirements diagrams into text form.

1.2.1.2 Modeling Existing Textual Requirements for the Purpose of Testing

In this case, a requirements diagram is created for a logically coherent set of textually speci-
fied requirements which, for example, specify a necessarily complex system behavior. The
purpose of this diagram is to check the comprehensibility of textual requirements or to un-
cover inconsistencies or omissions in the textual requirements. Any defects uncovered are
then corrected in the textual requirements.

1.2.1.3 Modeling Existing Textual Requirements for Clarity

In this case, for example, modeled requirements are used to represent extensive and com-
plex relationships that affect the behavior of the system. However, this redundant form of
the specification can lead to significant problems with regard to contradictions between tex-
tually specified requirements and modeled requirements.

1.3 Terms and Concepts in Requirements Modeling

Using the general terms and concepts found in system modeling, the following explanation
looks at the terms and concepts relevant for modeling requirements as well as the important
relationships between the various terms and concepts. Figure 2 shows a semantic network
of the basic terms and concepts relevant for requirements modeling. Terms that are already
defined in the IREB Glossary of Requirements Engineering Terminology are labeled with ↑.

The system of terms is based on various definitions in the IREB Glossary of Requirements En-
gineering Terminology [Glin2011] and complements this glossary with terms and concepts
that are particularly essential for requirements modeling. A model is regarded as an ab-
stracting image of the properties of a system. To make the scope and complexity of the mod-
eling manageable, various views of the system (and its environment) and the properties of
the system in relation to each specific view are represented through diagrams and supple-
mentary textual model elements. Each diagram is based on a specific diagram type, which in
turn is defined via a modeling language (more precisely by syntax, semantics, and pragmat-
ics). The underlying modeling language of a diagram type defines the set of modeling con-
structs that can be used to construct the corresponding diagrams (e.g., class and association
for the construction of class diagrams). In a modeling language, graphical and/or textual no-
tations are defined for the modeling constructs.

1.4 Requirements Models 3

↑model

↑diagram

diagram type

↑modeling language

graphical model
element

↑view

↑syntax ↑semantics pragmatics

modeling construct

11

1

1

is instance of

depicts

is represented

abstract
representation

has

1..*

is defined by

1..*

defines

1..*

defines

↑system

1..*

consists of

↑requirement

textual model
element

is formed by
refers to

1..* 1..*

1

1

0..*

0..*

1

*

1..*

is represented

specifies

↑requirements model

is a

is formed by

1..*

consists of

*

represents

1
1 0..1

1..*

1

0..*

graphical notation
element

textual notation
element

0,1 0,1

represented
by

represented
by

model element

is a

is a

is instance of

0..*

1..*

11

refers to
refers to

0..*

0..*

Figure 2: Conceptual network of the core terminology in requirements modeling

A diagram consists of a set of model elements, each representing a specific graphical model-
ing construct of the modeling language of the associated diagram type (e.g., class: "person",
association: "is employed by", class: "company"). Diagrams and graphical model elements
can be supplemented by textual model elements (e.g., textual description of the trigger of a
use case) which express specific textual modeling constructs (e.g., a section of a use case
template). The graphical and textual model elements form the atomic constituents of models.
A requirements model is a specific type of model (more precisely: a type of system model)
used to specify the requirements of a system with the aid of diagrams and textual supple-
ments.

1.4 Requirements Models

The individual requirements of a requirements model are represented by model elements
that are specified within requirements diagrams and via textual additions to these diagrams.

1.4.1 Modeling Languages for Requirements Modeling

A number of diagram types and associated modeling languages are available for require-
ments modeling. The selection of the diagram type to be used in each case depends on the

4 Basic Principles

purpose, which thus determines which specific requirements of the system should be docu-
mented and which persons are the "target audience" for the requirements models.

The relevance of a diagram type often also depends on the type of system (e.g., operational
information system or embedded system) and partly on the application domain (e.g., banks,
insurance companies, automation technology, vehicle/aircraft industry) for which the sys-
tem is being developed. Often (e.g., in embedded systems), requirements engineering focus-
es on the reactive behavior of the system. This is because the size and complexity of the re-
quired behavior of today's embedded systems are mainly determined by the necessary reac-
tivity of the systems. Therefore, state machine diagrams of the OMG SysML [OMG2010a],
OMG UML [OMG2010b], or MATLAB/Simulink Stateflow diagrams are used for require-
ments modeling when developing embedded systems. The state machine diagrams can be
supplemented by complementary diagrams, such as use case diagrams, scenarios, or activity
diagrams. In contrast, business information systems (e.g., software for processing loan ap-
plications) usually have no extensive and complex reactive behavior. Therefore, when mod-
eling requirements for such systems today, it is primarily diagram types that allow the mod-
eling of extensive and complex information structures (e.g., UML class diagrams) that are
used. Other diagram types used are those that allow the modeling of process-oriented as-
pects, such as event-based process chains [Sche2000] or BPMN diagrams [OMG2011] as part
of the business analysis, as well as UML activity diagrams—for example, to model require-
ments with reference to the required flow logic of the system under development. Here
again, other complementary types of diagrams can be used—for example state machine dia-
grams—in order to model the necessary requirements in terms of reactivity of the system.

In addition to specific approaches such as event-driven process chains (EPCs) or BPMN,
which are often used in the context of business analysis or MATLAB/Simulink diagrams in
requirements modeling for embedded systems, the "universal" modeling approaches UML
and SysML are very often used for modeling requirements. UML version 2.4 distinguishes
between 14 different diagram types, seven of which are used for structure modeling and
seven diagram types are used for behavior modeling. Note that the diagram type "profile di-
agram" is used to document language profiles (i.e., adaptations and extensions to the model-
ing language) and not, like the other diagram types, for actual system modeling. SysML was
designed specifically for modeling in the development of complex systems and is a subset of
UML extended with special diagram types and notation elements. The corresponding exten-
sions relate to new structure diagrams (internal block diagrams, block definition diagrams,
parametric diagrams). SysML no longer contains the diagram type "class diagram". With re-
gard to the behavior diagrams, no new diagram types are introduced in SysML; instead, the
behavioral diagram types of UML are used, whereby SysML activity diagrams differ from the
UML activity diagrams with respect to syntax and semantics.

1.4.2 Requirements Modeling versus System Design

In practice, it is sometimes difficult to distinguish between requirements diagrams and de-
sign diagrams (see, e.g., [BoRJ2005]). The cause is frequently seen in the fact that the same
universal modeling languages are used for requirements modeling, such as UML or SysML. In
fact, the cause in most cases is that the alleged requirements diagrams specify not require-
ments but rather the system design, or that requirements and design are mixed in diagrams.
The latter is the case, for example, when the required system behavior is already modeled in
relation to individual, specific design decisions in a diagram and these design decisions are
not specified by boundary conditions (constraints), for example, in terms of the technology
to be used (see Section 1.5).

1.4 Requirements Models 5

1.4.2.1 Requirements Diagrams and Design Diagrams in System Analysis

As part of the system analysis, it is often the case that both design diagrams and require-
ments diagrams are created. The first step in system analysis is typically the analysis of an
existing system. The "system" can be anything from an individual software system to com-
plex socio-technical systems where a variety of software systems and people (or roles) co-
operate in order to fulfill an overarching purpose, as is the case, for example, in complex
business information systems. The system analysis itself can be performed from different
perspectives, such as function-centered or data-centered (see, e.g., [DeMa1979] and
[ShMe1988]). In the context of system analysis, the system under development is often ini-
tially analyzed (e.g., the system in operation and the associated documentation) and mod-
eled in the form of diagrams as it is perceived. In this case, the technical incarnation of the
system is modeled first, that is, the concrete technical solution as it is in operation (see
[McPa1984]). The corresponding model of the incarnation is then analyzed in terms of the
underlying technical aspects, meaning that it is abstracted from the concrete technical im-
plementation to identify the business core. The result of this activity is a model of the func-
tional requirements of the system under development. Both models—the incarnation model
(i.e., the technical solution) and the model of the functional requirements (also referred to as
the essence model)—are factual models, that is, models that document the existing proper-
ties of the system under development (SuD). As part of the system analysis, a target model is
then often formulated based on the model of the functional requirements. This target model
specifies which technical requirements are to be implemented by a newly developed system
or as part of a change project. These technical requirements are then incorporated back into
the development process. In typical systems analysis processes, therefore, both require-
ments diagrams and design diagrams are created. The goal of system analysis is to model the
functional requirements of the system under development.

1.4.2.2 Relationship between Requirements Models and Design Models

During the development of complex software systems, requirements and design are often
developed with very strong links. This close link between the development of requirements
and the definition of a solution in the form of a system design is illustrated with the twin
peaks model shown in Figure 3 (cf. [Nuse2001]).

Problem view Solution view

Requirements models Design models

Design decisions

Design constraints

e.g. Total system

e.g. Subsystems

e.g. Software

Dissection planes of

the total system

Problemsicht Lösungssicht

Anforderungsmodell Entwurfsmodell

Entwurfsentscheidungen

Entwurfs-Contraints

z.B. Geschäftsprozess

z.B. Automatisierte Teil

z.B. Applikation

Ebenen

Degree of solution

relatednesst

High

Low

Figure 3: Relationship between requirements and design

As illustrated in the figure, during the development of complex software systems, there is a
strong interaction between the definition of requirements and the system design. Typically,
the first step is to produce a set of more general requirements for the complete system. This
set of requirements is then the basis for the definition of the preliminary system architecture
which satisfies these requirements. During the transition between requirements definition

6 Basic Principles

and system design, design decisions have to be made and the given conditions for the design
(design constraints) have to be met (e.g., the specification of a style of architecture to be
used). Starting from the initial system architecture, which consists for example of (logical)
subsystems, the requirements for the individual subsystems can be specified. If sufficiently
detailed requirements are available, the initial system design is refined. As an example, Fig-
ure 3 illustrates the relationship between the requirements and design of a technical system
(complete system) which is initially abstracted from the separation between hardware and
software. The requirements for the actual software of the system are first specified on the
third system level. For pure software development projects, the software to be developed is
classified at the highest system level. On the lower system levels, logical components and
software parts are then considered (see, e.g., [ISO26702], [HaHP2001]).

In this approach, the design decisions at one level significantly affect the definition of re-
quirements at the next lower level of detail—that is, the requirements of the next level are
based on the design decisions previously made which in turn represent a framework for the
specification of requirements at the next lower level. Even though there is a close link be-
tween requirements and architectural design, within the scope of requirements modeling it
is all the more important to strictly separate the requirements model from the design model
and to establish the relationships through appropriate dependency relationships (see Sec-
tion 1.9). More details can be found in [Pohl2010], [BDH2012], and [HaHP2001].

1.5 Views in Requirements Modeling

The foundation level of the Certified Professional for Requirements Engineering distin-
guishes between three views in the modeling of functional requirements (cf. [PoRu2011]),
namely (1) the static-structural view, (2) the behavioral view, and (3) the functional view.
Building on these basic views of requirements modeling, a more differentiating set of views
is presented below (see Figure 4).1

1 The creation of views can be established in various ways within the scope of requirements engineering. For
example, views can be defined that address specific concerns of stakeholders. A "user view" can be defined of
the requirements of the system, for example. This view considers (models) only those requirements that di-
rectly concern the use of the system under development. In a "maintenance engineering view", only those sys-
tem requirements that relate directly to the maintenance of the system would be considered. Various "philoso-
phies" for establishing views can be applied in combination to control the scope and complexity of require-
ments modeling. It is conceivable, for example, that the user view and the maintenance engineering view are
each considered from an information structure view and a dynamic view. Through common concepts or map-
ping relationships, the requirements models of the different views can then be integrated into an overall model.

1.5 Views in Requirements Modeling 7

Requirements View

Information-Structure View Dynamic View Quality View

Use Case View

Data-Flow-oriented View

Control-Flow-oriented View

State-oriented View

Scenario View

Class Diagram (IREB AL)

Use Case Diagram
(IREB AL)

Data-Flow Diagram (IREB AL)
Activity Diagram with Object-Flow / Data-Flow

(IREB AL)

Activity Diagram (IREB AL)
Event-driven Process Chain

Business Process Modeling Language

Sequence Diagram (IREB AL)
Communication Diagram (IREB AL)

Message Sequence Charts according to ITU Z.120

State Machine Diagram (IREB AL)
Finite Automaton

Statecharts

Simulink Stateflow

Simulink Block Diagram

Entity-relationship Diagram

Constraints View
boundary conditions

Context View

Figure 4: Views in requirements modeling in the IREB advanced level module "Requirements Modeling"

1.5.1 Context View

A key challenge in requirements engineering is to understand the context of the system un-
der development (e.g., the software to be developed). This includes the knowledge of what
other systems are related to the system under development in an operational context, prop-
erties of these external systems, as well as knowledge about which roles, people interact
with the system and which properties they have that are relevant for the system. Context
modeling is typically used to identify the necessary interfaces between the system under de-
velopment and its context.

1.5.2 Information Structure View

The information structure view focuses on requirements of the system under development
which are related to static and structural aspects of the functionality, such as the structure of
data to be processed by the system. Typical diagram types used here are class diagrams or
various dialects of entity-relationship diagrams (e.g., according to Chen or in the FMC ap-
proach).

1.5.3 Dynamic View

The dynamic view focuses on those requirements of the system under development which
are related to dynamic aspects of the functionality (see, e.g., [BoRJ2005]). For the purposes
of the foundation level of the Certified Professional for Requirements Engineering, the dy-
namic view of the requirements of a system is formed through the behavioral and functional
views. To model the requirements in the dynamic view, in advanced level requirements
modeling, the dynamic view is strongly differentiated (see Section 1.6). Typical diagram
types used for requirements modeling here are use case diagrams, activity diagrams, state
machine diagrams, data flow diagrams, and sequence diagrams.

1.5.4 Quality View

The quality view focuses on those requirements of the system which relate to necessary
qualities of the system under development or individual system components. Although there
are a number of approaches for model-based specification of quality requirements currently

8 Basic Principles

being researched (see, e.g., [HKDW2012]), in practice today quality requirements (regard-
ing, for example, performance, reliability, real-time behavior, safety, or robustness) are still
specified within requirements models mainly by textual supplements or as an annotation to
specific model elements in requirements diagrams (see, e.g., [RiWe2007]). A detailed taxon-
omy of requirements in the quality view (quality requirements) can be found in ISO 25010
[ISO25010]. Detailed information on the documentation of requirements in the quality view
can be found in [Pohl2010].

1.5.5 Constraints View

The constraints view focuses on requirements in terms of boundary conditions (i.e., external
constraints) to be adhered to by the system under development (or the associated develop-
ment process) (see [ISO29148]). Typical boundary conditions include organizational, regula-
tory, or technological conditions. Technological constraints occur, for example, in the form of
design constraints (e.g., service-based or client-server) which define a specific architectural
style for the system under development. Such constraints are often documented in textual
form (or by textual additions in requirements models), whereas specific types of diagrams
such as class diagrams or component diagrams are often also suitable for documenting or-
ganizational or technical constraints. Detailed information about boundary conditions can be
found in [RoRo2006], for example.

1.6 Views of the Dynamic View in Requirements Modeling

The dynamic view in requirements modeling considers those requirements which relate to
the chronological-logical relationships in the required behavior of the system. Today's busi-
ness information systems—and intelligent embedded systems even more so—have a very
extensive and complex structure of such relationships. These relationships have to be elicit-
ed and analyzed and specified in the requirements as part of requirements engineering. To
make the scope and complexity of such dynamic relationships in the system behavior man-
ageable within requirements modeling, the dynamic view is divided into views. The integra-
tion of these views leads to an overall model of the dynamic view of the requirements of the
system under development, as shown in Figure 4.

1.6.1 Use Case View (User Functions and Dependencies to the System
Context)

Within the dynamic view, the use case view considers the high-level system user functions
and their relationships to actors in the system context. A high-level user function character-
izes a functionality that the system must offer for an actor within the context to gain a bene-
fit (added value). Use case diagrams are typically used for modeling here.

1.6.2 Data Flow-Oriented View (System Functions and Data
Dependencies)

Within the dynamic view, the data flow-oriented view considers the functions that are per-
ceptible at the system interface, as well as the data dependencies between these functions
and with actors in the system context. The functions can also be analyzed at various levels of
granularity, for example, from high-level user functions (e.g., use cases) to finely detailed
technical functions, the interaction of which implements the functionality of the use case.

1.7 Adapting Modeling Languages for Requirements Modeling 9

Typical diagrams used here are data flow diagrams (e.g., according to DeMarco [DeMa1979])
and activity diagrams that focus on the object flow between actions.

1.6.3 Control Flow-Oriented View (Process Flow Logic)

Within the dynamic view, the control flow-oriented view considers the processes (or activi-
ties or actions) perceptible at the interface of the system and their flow logic. The control
flow relationships are considered in processes that occur, for example, in the form of se-
quential, alternating, or concurrent sequences. UML or SysML activity diagrams are typically
used to model the control flow-oriented view. A special feature with regard to business
analysis is that (extended) event-driven process chains or BPMN diagrams are also used for
modeling at business process level.

1.6.4 State-Oriented View (States and State Changes)

The required state space of the system is modeled in the state-oriented view within the dy-
namic view. In particular, the model shows the reactive behavior of the system in relation to
the system context. The states and state changes that are observable at the interface be-
tween the system and the system context are modeled in this view. A state change of the sys-
tem under development can be triggered by an event in the system context, by a time event,
or by an intrinsic event. Finite automata, Harel Statecharts, or UML state machine diagrams
based on these concepts are typically used here.

1.6.5 Scenario View (Interaction Sequences between Actors and the
System)

The scenario view within the dynamic view considers interactions between actors in the sys-
tem context and the system which lead to one or more actors in the system context obtaining
added value or achieving a goal (e.g., obtaining cash by using an automated teller machine).
Scenarios are frequently used to make use cases in use case diagrams more specific. Here,
the scenarios describe the interactions between the system and actors in the system context
that lead to successful execution of the use case. In scenario modeling, as well as the imme-
diate interaction between actors and the system under development, the message exchange
between actors in the context of the system is also typically modeled. UML/SysML sequence
diagrams or Message Sequence Charts according to the ITU standard Z.120 [ITU2004] are
typically used to model scenarios.

1.7 Adapting Modeling Languages for Requirements Modeling

UML and SysML have a concept for adapting or extending the different modeling languages.
This is useful, for example, when specific concepts of a project or application domain are to
be anchored in the language. UML and SysML are typically adapted by defining stereotypes
to give notation elements a special meaning (or semantics). In UML and SysML, all notation
elements can be adapted or extended by stereotypes. The definition of a stereotype consists
of a syntactic part, in which the representation of stereotypes and the desired references to
notation elements are set, as well as a semantic part which specifies the meaning of the ste-
reotype. In UML/SysML diagrams, stereotypes are modeled in the form of angle brackets.
For example, using the stereotype << domain >> for classes within a class diagram (defini-
tion of the syntax of the stereotype), it would be possible to express that classes that have
this stereotype are specific to the particular application domain and their technical meaning

10 Basic Principles

is more precisely defined within a domain glossary (definition of the semantics of the ste-
reotype).

1.8 Integrating Textual Requirements in the Requirements
Model

SysML differs from UML in that it has a special means of notation for modeling textual re-
quirements. It also defines a special type of diagram, the requirements diagram, which is as-
signed to neither the structure view nor to the behavior view. This diagram type allows the
modeling of relationships between textual requirements or the attachment of textually spec-
ified requirements to model elements of SysML diagrams and referencing of these require-
ments. This type of "modeling" of textual requirements is often used to include predeter-
mined requirements (e.g., from the point of view of a special field) in the requirements mod-
el. The main purpose of this integration is to relate the modeled requirements to the prede-
termined textual requirements. This allows the expression of which modeled requirements
make a textual requirement more specific.

Most commercially available UML tools, however, already offer the possibility of using textu-
al requirements in any diagram type, and not only in requirements diagrams. This allows, for
example, the specification of textual requirements as an alternative to the diagrammatic
specification because in the opinion of a requirements engineer, certain requirements can be
specified more appropriately in textual form. For example, an action in a flow can be refined
through a number of textual requirements which are then included in the requirements
model and related to this action (by means of an appropriate tracing relationship, for exam-
ple). Using this concept of integrating textually specified requirements in requirements
models allows us to specify quality requirements that relate to a specific action (e.g., re-
quirements concerning the performance of this action) as textual requirements by placing
them in a relationship with the action within the diagram in which the action was modeled.
Through this concept of complementary use of textual requirements, model elements from
the various diagram types for requirements modeling (and thus the corresponding dia-
grams) can be extended in order to relate textual requirements to requirements diagrams
within a requirements model.

1.9 Documenting Dependencies between Model Elements

Regardless of whether requirements are available in the form of requirements diagrams or
in textual form, they can be linked to one another in the course of model-based documenta-
tion of requirements with UML/SysML using explicitly defined dependency relationships. To
do this, appropriate stereotypes for dependency relationships between model elements of
the requirements model can be defined (see also Section 1.7). In many cases, the stereotype
to be used (i.e., its syntax and semantics) depends heavily on the project context and the ap-
plication domain, which means that in a development project, the project participants must
define which dependency types are needed between requirements (see also [RaJa2001]).
The required dependency relationships must then be defined in the appropriate tools. Typi-
cal examples of commonly found dependency relationships between model elements within
a requirements model are:

 <<refines>>: A <<refines>> B expresses that a single requirement or a set of require-
ments A refines a single requirement or set of requirements B by, for example, specify-
ing one or more additional requirements to the requirements B.

1.10 The Benefits of Requirements Modeling 11

 <<realizes >>: A << realizes >> B expresses that the requirements A realize the re-
quirements B. This is used, for example, when A represents the requirements for a
component that when met, lead to fulfilment of the requirements B for the entire sys-
tem. However, this type of tracing is based on the fact that either (1) design decisions
about the structure of the solution were taken in the development process, or (2) the
need for such a component or specifications about the structuring of the overall system
into components already exist as boundary conditions for requirements engineering
(cf. [BDH2012], for example).

 <<satisfies>>: A <<satisfies>> B expresses that a single requirement or set of require-
ments A meets a single or a set of requirements B. This type of dependency relation-
ship is used, for example, in customer-supplier relationships when more detailed re-
quirements that have been specified by the contractor have to be related to the more
general requirements of the client to express that the requirements A of the contractor
meet the requirements B of the client. This type of dependency is used to express rela-
tionships between requirements in the system requirements specification and re-
quirements in the customer requirements specification—for example, to support evi-
dence that, for the system under development, the requirements specified in the sys-
tem requirements specification ensure that the realized system will meet the require-
ments in the customer requirements specification. The dependency type <<satisfies>>
has a certain resemblance to the dependency type <<realizes>>, whereby dependen-
cies of the type <<satisfies>> are typically used at the interface between client and con-
tractor.

1.10 The Benefits of Requirements Modeling

Compared to the textual specification of requirements, specification of requirements by
means of diagrams has a number of essential advantages:

 Requirements are easier to understand: Cognitive research has shown that, generally,
facts that are visualized in diagrams are easier to understand and remember than cor-
responding textual descriptions of these facts (cf. [LaSi1987]). In particular, this means
that requirements specified in diagram form are easier to understand and remember
than requirements which exist in textual form. "A picture is worth a thousand words!"

 Inherent support of the principle of "separation of concerns": Diagram types are defined
for a specific purpose and, through the available notation elements (semantics) and the
way the language allows these notation elements to be combined (syntax), force the
modeler to focus on a situation. For example, state machine diagrams should be used
to model the necessary reactive behavior of the system under development as part of
requirements modeling and not to model processes or information structures. In re-
quirements modeling, the separation of concerns is established by different views. The
requirements models of the individual views can be integrated through common con-
cepts. This allows us to make statements across different views of requirements. De-
tailed information can be found in [DaTW2012].

 Inherent support of the principle "divide and rule": By using different diagram types, the
specific requirements supported by that particular diagram type can initially be mod-
eled in isolation. The diagrams of different types can be combined using common con-
cepts or defined mapping relations in order to obtain an integrated requirements
model. This feature of diagram-based specification of requirements supports the re-
quirements engineer in breaking down the overall problem— that is, the specification

12 Basic Principles

of the requirements of a system—into manageable sub-problems (e.g., the specification
of requirements for a subsystem). The merging of the individual requirements models
of the sub-problems then forms the requirements model of the higher level system.
More detailed information can be found in [BDH2012] and [HaHP2001], for example.

 Reduced risk of ambiguity: Due to the higher degree of formality of modeling languages
for requirements modeling compared to natural languages, requirements specified in
diagram form have a lower risk of ambiguity or misinterpretation by other partici-
pants in the development process (e.g., the architects, developers, testers).

 Higher potential for automated analysis of requirements: Due to the higher degree of
formality of requirements specified in diagram form compared to requirements speci-
fied in text form, such requirements can be analyzed to a large extent or even com-
pletely by machine (e.g., an analysis of the accessibility of states in a requirements dia-
gram of the state-oriented view).

 Higher potential for automatic processing of requirements: The higher degree of formal-
ization of requirements specified in diagram form also increases the possibility of pro-
cessing the requirements of the system further automatically and using them in other
development disciplines, for example, to derive test cases for system testing from re-
quirements diagrams of the control flow-oriented view.

 Requirements in context: The modeling of requirements leads to individual model ele-
ments within the requirements model (see Section 1.3) and the relationships of indi-
vidual requirements to other requirements being represented directly in the require-
ments model. This facilitates the handling of large and complex requirements and
promotes understanding of the requirements because the context of a requirement is
visible to the reader of the requirements in the requirements model. In an activity dia-
gram, for example, for every action it is immediately visible what other actions this ac-
tion is related to and what change of state of the system under development is trig-
gered by the execution of the action.

1.11 The Quality of Requirements Models

The quality of a requirements model is based on the quality of its components. As described
in Section 1.1, the requirements model of a system is composed of a set of diagrams and tex-
tual additions. When requirements are modeled, a substantial part of the requirements is
specified in the diagrams, which means that the quality of the requirements model is largely
determined by the quality of the individual diagrams and their mutual relationships. In turn,
the quality of the individual diagrams is determined by the quality of the model elements
within the diagrams and the associated textual additions. The left-hand pane in Figure 5 il-
lustrates the hierarchical structure of the evaluation of the quality of requirements models.

1.11 The Quality of Requirements Models 13

Quality of the model elements

Quality of the requirements diagrams

Quality of the requirements model

Syntactic

Semantic

Pragmatic

Quality

Content correct
and complete?

Fit for use?

Meets syntactic
demands?

Figure 5: Assessment of the quality of requirements models

The quality of the requirements model, the requirements diagrams, and model elements can
be assessed against three criteria (see [LiSS1997], for example):

Syntactic Quality

The syntactic quality expresses the extent to which a single model element (graphical or tex-
tual), requirements diagram, or requirements model satisfies the applicable syntactic speci-
fications. If the syntactic quality of a requirements diagram of the scenario view (which is in
the form of a UML sequence diagram) is to be assessed, the extent to which this diagram
meets the syntactic requirements of UML must be examined. For example, the syntax of se-
quence diagrams prescribes that a synchronous message at a certain level of detail consists
of a function call and a reply message. If, in a scenario modeled by a sequence diagram, a re-
ply message occurs without a preceding function call, this does not meet the syntactic speci-
fications of the underlying modeling language and thus reduces the syntactic quality of the
diagram. If appropriate modeling tools are used for modeling requirements, the syntactic
quality of the diagrams created is usually ensured by the tool.

Semantic Quality

The semantic quality expresses the extent to which a single model element (graphical or tex-
tual), the requirements diagram, or the requirements model correctly and completely repre-
sents the facts. Let us assume, for example, that after the insertion of a debit card into the
card slot of an ATM, the customer’s PIN is required as the first step. If a relevant require-
ments diagram of the control flow-oriented view (e.g., an activity diagram) models that after
reading the card data, the customer is first asked for the payment amount, this represents a
semantic defect in the corresponding diagram since the actual flow required deviates from
the diagram. Such a defect in a requirements diagram negatively affects the semantic quality
of the higher level requirements model.

Pragmatic Quality

The pragmatic quality expresses the extent to which a single model element (graphical or
textual), the requirements diagram, or the requirements model is suitable for the intended
use. This in particular raises the question of whether the degree of detail and abstraction
level is appropriate for the intended use. For a single model element, this means whether the
model element (such as a state transition in a state-oriented requirements model) is speci-
fied at the right level of detail (e.g., is only the triggering event specified? Or are the addi-
tional conditions applicable for the state change and the triggered behavior indicated?). The
pragmatic quality of an individual model element, a requirements diagram, or a require-
ments model can only be assessed if the addressee and the purpose of the diagram are
known. Since the pragmatics determine what abstractions are useful, this also has a direct
impact on the assessment of the semantic quality—that is, the completeness of a model ele-

14 Basic Principles

ment, a requirements diagram, or a requirements model can only be assessed in terms of an
abstraction that is sensible from a pragmatic point of view.

1.12 Further Reading

Terminology in requirements modeling

 Glinz, M.: A Glossary of Requirements Engineering Terminology. Standard Glossary of the
Certified Professional for Requirements Engineering (CPRE) Studies and Exam, Version
1.1, May 2011.

Requirements modeling

 Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques. Springer 2010.

 Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide. Addison-
Wesley 2005.

 Daun, M.; Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.; Hönninger, H.;
Achatz, R.; Broy, M.: Model-Based Engineering of Embedded Systems, Springer, Heidelberg
2012.

 Davis, A. M.: Software Requirements – Objects, Functions, States. 2nd Edition, Prentice
Hall, Englewood Cliffs, New Jersey, 1993.

Quality of requirements models

 Lindland, O. I.; Sindre, G.; Sølverg, A.: Understanding Quality in Conceptual Modeling. IEEE
Software, Vol. 22, No. 2, IEEE Press, 1994, 42-49.

 Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques. Springer, 2010.

15

2 Context Modeling

A major challenge in requirements engineering is understanding the context of the system.
The more complex and critical the system under development is, the more important it is to
understand and document the context. This includes knowledge about which other systems
influence the system under development in an operational context, properties of these ex-
ternal systems, as well as knowledge about which roles or persons interact with the system
in an operational context and which properties that are relevant for the system they have. In
addition, context modeling also helps to identify the necessary interface of the system under
development.

2.1 Purpose

In requirements engineering, the scope of the system under development is defined (that is,
the system boundaries are specified) and the system under development is clearly distin-
guished from its context. For this purpose, the influence of the context has to be investigated
and ideally documented. The more complex and more critical the system under development
is, the more important it is to document the knowledge about the context effectively. This in-
cludes the knowledge about:

 Which roles and persons interact with the system in operation?

 What other systems are related to the system under development from an operational
perspective?

 How the interface between the system under development and the people and systems
is created in context?

Furthermore, the context view can help when considering the properties (functions, quali-
ties) of the external systems relevant for the system under development.

The context view documents properties of the system context. In contrast, the following
chapters mainly specify the perceivable necessary properties of the system that are in scope
and the system must have to fulfil its purpose in operation (including meeting the goals of
stakeholders and thereby complying with all conditions). The context view thus documents
a significant aspect of the work of requirements engineers when defining the interface be-
tween the system and the context.

2.2 Context Diagrams

From a requirements perspective, the context view defines the scope of a system, meaning
that it draws a line between functionality in and outside the scope. The classic context dia-
gram from Structured Analysis (SA) [DeMa1979] is often used as a means of representation
but today—because there are hardly any tools to support SA—many other diagram types
with equivalent content can be used (e.g., a UML class diagram, a use case diagram, or a
component diagram). In addition, a tabular representation can be used as a substitute for a
context diagram as long as the basic elements listed below are present.

16 Context Modeling

2.2.1 Basic Elements of Context Diagrams

The three essential basic elements of a context diagram are:

 The system under development (more precisely, the system boundary)

 Neighboring systems or actors of the system under development (all people, roles, IT
systems, equipment, etc. with which the system has interfaces)

 The (logical) interfaces between the system and its neighboring systems

Experience shows that the interfaces between the system and the context can best be de-
termined by the incoming and outgoing data. The classical context diagram therefore focuses
on this input and output data from and to neighboring systems. In this sense, the context di-
agram is the most abstract form of a data flow diagram (see Section 4.3) because the com-
plete functionality of the system is reduced to one function (namely the whole system). The
focus of this diagram is the identification of all interfaces of the system under development.

2.2.2 Example of a Context Diagram

Figure 6 shows an example of a context diagram using Structured Analysis. The overall sys-
tem (an early warning system in the mining industry) is represented as a circle in the mid-
dle. The human neighboring systems are shown in the example as stick figures and the or-
ganizational and technical neighboring systems as boxes. The interface is modeled in the
form of data flows to and from the neighboring systems.

Figure 6: Example of a context diagram

Today, SysML block diagrams [OMG2010a] can be used to model the system context, for ex-
ample. Figure 7 shows the context diagram of an automated machine for the production of
cylinder heads for cars (see [DaTW2012]).

Early
Warning
System

Sensor

Operator

Admin

Statistics
System

Day Results

Protocol

Warning
Sensor
Data

Operator
Request

System
Messages

2.2 Context Diagrams 17

Figure 7: Example of a context diagram in SysML block diagram form

The diagram shows actors in the system context and the data flows between actors and the
system under development. Such context diagrams based on SysML document very similar
information about the system context to context diagrams which are based on the data flow
diagrams of Structured Analysis.

2.2.3 Notation Elements for Modeling Context Diagrams with Data
Flow Diagrams

Data flow diagrams can be used to model data flow-oriented context diagrams. Figure 8
shows possible model elements for the construction of data flow-oriented context diagrams
based on data flow diagrams according to DeMarco (cf. [DeMa1979]).

Name

Name

Notation

Neighboring system / actor

System (SuD)

Explanation

The system considered in the
scope of analysis/development

Neighboring system or
actor in system context

Data flow
Flow of data between system
and system context

Name

Name

Figure 8: Possible modeling constructs of data flow-oriented context diagrams

In context modeling using data flow diagrams, the system under development is often repre-
sented by a circle, sometimes a box or a cloud. The corresponding modeling construct repre-
sents the system under development, which, for example, represents either a part of a com-
pany, a business process, or a system to be automated. It thus expresses the scope of the sys-
tem under development (i.e., the system boundary). The presentation of the neighboring
systems is relatively arbitrary; often these are modeled as boxes but can also be modeled as
stick figures or as a 3D box or as double lines for external databases or "files".

In Structured Analysis according to DeMarco, neighboring systems (sources and sinks) are
called terminators (= terminals). Neighboring systems or actors represent any kind of com-
munication end points of the system under development. Neighboring systems or actors can
on one hand be people who work with the system, but on the other hand hardware/software
systems, devices, sensors, actuators, or passive data storage (such as databases or files)—
that is, everything or everyone who delivers input to the system or receives output from the
system (or both). The neighboring systems thus represent parts of the context of the system
under development.

18 Context Modeling

The data flows between neighboring systems or actors and the system under development
represent input and output interfaces of the system under development. These data flows
are mostly shown as straight or curved lines with an arrowhead to the system (for input),
arrowhead to the neighboring system (for output), or as a double arrow. Data flows in this
type of context diagram represent the incoming and outgoing data or control information.
Mostly, these arrows are interpreted as data flows into or out of the system. If control flows
are represented in this way, this should be explained in a legend to the diagram.

2.2.4 Pragmatic Rules for Context Modeling with Data Flow Diagrams

The following pragmatic rules should be considered:

- All neighboring systems that interact with the system should be included in the dia-
gram (completeness of the communication partners)

- All neighboring systems should be named (to clearly specify where the input comes
from and where the output goes to)

- All inputs and outputs should be labeled with the logical name of the data flows (be-
cause unnamed arrows indicate a lack of understanding of the interface)

2.3 Other Types of Context Modeling

The cooperation between the system under development and the neighboring systems in the
context is also the subject of the use case view (see Section 4.2) and the scenario view (see
Chapter 5). In addition to defining the system boundaries (scoping), the use cases are used
to roughly structure the system's functionality. With the scenario view, sequences of com-
munication and other communication details can be specified more precisely in addition to
the specification of the data flows. Current research includes proposals for context modeling
in a state-oriented view, in which the state of the system context and corresponding state
transitions are modeled. There are also approaches for modeling static-structural aspects of
the system context by using information structure view diagrams. Other approaches to con-
text modeling consider the system in the context of a data flow-oriented view by modeling
functions in the system context (context functions) and documenting their relationship to
functions of the system. Such approaches are used in particular for mechanical detection of
unwanted functional interactions between the system and its context (feature interactions).
An overview of the different types of context modeling in requirements engineering can be
found in [DaTW2012].

2.4 Further Reading

Data flow-oriented context diagrams

 DeMarco, Tom: Structured Analysis and System Specification, Yourdon Press, Prentice
Hall, 1979.

 Daun, M.; Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.; Hönninger, H.;
Achatz, R.; Broy, M.: Model-Based Engineering of Embedded Systems, Springer, Heidelberg
2012.

Use case-oriented context diagrams

 Jacobson, I.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software Engi-
neering – A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

19

3 Information Structure Modeling

3.1 Purpose

The modeling of information structures has a central role in requirements modeling, mainly
because it has two tasks:

 Specification of technical terms and data

 Specification of requirements that relate to technical terms.

A glossary is often used to define technical terms in requirements engineering. In a glossary,
the meaning of the terms in the domain or in the language of the client is defined. With the
introduction of information models, the content of a glossary is supplemented with im-
portant information. Information modeling often starts by looking at all nouns that occur ei-
ther in textual requirements, or, for example, in data flow-oriented or control flow-oriented
requirements modeling in the naming of functions of the system (see Section 4.3).

In an information model, however, a lot of emphasis is placed on the relationships between
the terms. Expressing these relationships is one of the strengths of diagrams of the infor-
mation structure view compared to a textual, perhaps alphabetically arranged glossary. The
second step is to define the "attributes" of the terms. Attributes express the relevant proper-
ties and technical information of a term. Thus, relevant properties can be clearly represent-
ed in an information structure diagram—for example, for a customer in a CRM system. With
this kind of information modeling, a conventional glossary is expanded to include additional
information. The glossary can be derived automatically from this type of diagram. Thus, the
use of information models also fulfils the purpose of a glossary—the definition of terms that
should be used uniformly throughout the system development.

Another use for the modeling of information structures is the precise specification of re-
quirements. All information modeled in the structures should be considered as require-
ments (see also Section 1.3). The statement above, about which customer data is relevant for
a CRM system, can also be interpreted as "data that the CRM system must manage for a cus-
tomer".

3.2 Modeling Information Structures

This section looks at the requirements in the information structure view using UML class di-
agrams. There are several approaches for modeling information structures. One diagram
that is related to this kind of modeling is the ER (entity-relationship) diagram [Chen1976].
Today, it is commonly used for modeling database schemas. The relationship with the class
diagram consists in the transition from a (logical) information model in requirements engi-
neering to a physical database schema. The information model is a good basis for designing
database schemas, that is, the storage of business data.

The great advantage in the use of UML class diagrams lies in the UML integration with other
diagram types that are used in other views in requirements modeling (see Section 1.5). This
can be necessary to achieve the links required for a formally correct, complete, and under-
standable requirements model—for example, the link between activity diagrams and the in-
formation model.

20 Information Structure Modeling

This integration also determines the approach for the creation of an information model
within the framework of requirements engineering. Usually, you will create such a model to
have a good basis for modeling other views. However, it quickly becomes clear where the
deficits lie in the information model. In this case, any deficiencies in diagrams or other views
because, for example, when the functions were defined, not all required technical infor-
mation was considered, are then identified. This change between the different perspectives
is not always easy but has great potential with respect to the correctness and completeness
of the modeled requirements.

3.3 Simple Example

The figure below shows a simple example of a data diagram in the form of a UML class dia-
gram. It shows the relevant terms, the attributes, and the dependencies.

Figure 9: Example of a class diagram

The above class diagram consists of five classes: contact, company, person, address, and de-
partment. It documents the essential properties of these classes in the form of attributes—
for example, the attribute "date of birth" of a person—and the dependencies between these
classes, such as that a person is a representative for a company or that a company is made
up of departments. The meaning and use of the various modeling methods of class diagrams
are considered in detail in the following sections.

3.4 Modeling Classes, Attributes, and Data Types

The central element of information structure diagrams modeled on the basis of UML class
diagrams are the class and the attributes of the class.

3.4 Modeling Classes, Attributes, and Data Types 21

3.4.1 Classes

3.4.1.1 Objects versus Classes

When information structure models are used in requirements modeling, two terms must be
differentiated: objects and classes. A "class" is a pattern or template which defines the com-
mon properties of many objects. The objects are then referred to as instances of these clas-
ses.

Figure 10: Class vs. object

Figure 10 shows the classes person and car and on the right, some objects as instances of
these classes. For these objects, an important property of the objects is also shown: they are
unique and should therefore also have a unique identifier (for more information about
uniqueness, see Section 3.4.2). With the unique name in the figure above, the two cars be-
longing to Sally Brown can be differentiated.

3.4.1.2 Syntax and Semantics

Figure 11: A class

The simple representation of a class consists of a rectangle with the class name. This is ex-
panded in Section 3.4.2 with the representation of attributes.

As mentioned above, a class represents the template for a plurality of objects of this class
which are referenced in the requirements. Therefore, in general, the name of a class is used
in the singular. When referring to a person, the class name "persons" would be incorrect as
this means multiple persons.

The statement that a class represents the template for a plurality of objects of this class is a
general statement for a class diagram. You can, however, formulate the data structure per-
spective of a requirements model more easily with the class diagram: the terms that are rel-
evant in the domain in question appear as classes in the diagrams of this view. In other
words, the nouns that are used in the formulation of the requirements appear as classes.

22 Information Structure Modeling

With the distinction made above between an object and a class, the latter needs to be clari-
fied because the requirements (textual or graphical) are terms used to refer to any object of
that class.

Example: The system must display the data of a person.

Assume that in an information model a class person exists. This requirement is to be interpreted

such that the data for each object of the class person is to be displayed.

This results in the first task of modeling the information model: identifying the required
classes from the objects used in the requirements.

3.4.1.3 Heuristics for Identifying Classes

One of the simplest approaches for identifying classes is to define a class for every noun in
the requirements (or the current specifications). However, you will quickly find that this ap-
proach provides a vast number of classes which then have to be processed further. Many of
the classes found only describe the properties of another class. These classes are then added
to this other class as class attributes (see Section 3.4.2). Another aspect of reducing the vast
number of classes is to classify synonyms or phrases out of context, for example.

Let us assume that the following nouns would have been identified in a first step: person,
age, car, gender, color, vehicle, man. In this list, there are only two terms that are worth
modeling as classes (cf. [Mart1989], [ShMe1988]): person and vehicle. For the other terms,
the following applies:

 Man: synonym for person

 Age: property of a person

 Car: synonym for vehicle

 Gender: property of a person

 Color: property of a vehicle

With this selection, three assumptions were made that need to be confirmed in the context
of a real development project:

 The concept of person must be used consistently and not man.

 The concept vehicle must be used consistently and not car

 The term color refers to the color of a vehicle

For synonyms, the common language use of the project or a company is decisive—as long as
it is unique. This procedure allows a good first version of the information model. Further
heuristics that extend the approach presented are described in Sections 3.4.2.2 and 3.6.3.

Another way to find classes is to search directly for specific candidates in typical formula-
tions. These can be divided into three areas:

 Tangible or intangible objects

 Roles

 Functions

This procedure significantly reduces the set of all nouns.

3.4 Modeling Classes, Attributes, and Data Types 23

3.4.1.4 Tangible and Intangible Objects

Tangible objects in the real world are relevant for the requirements as they are either affect-
ed by the system under development or have a "representative" (e.g., a class) in the system
under development (or both cases can apply).

Examples are: person, car, door, book, leave application (which is not printed, so does not
have to be tangible) or club.

3.4.1.5 Functions

To support the system processes, additional and relevant information is often needed, such
as: delivery, order, call, assembly, or report. For example, the data of a delivery, such as the
date of receipt or the agent, may be technically relevant to the system.

Note that the term in the information model is not the function to be implemented by the
system. The information model describes the relevant information for the process—not the
process itself which is to be supported by the system (see also Chapter 4). This process is
generally denoted by a noun in combination with a verb in its normal form, rather than only
by a noun, as is the case in the information model.

Depending on the field of application, an order could be a useful class in the information
model. The receipt of an order could then be a supportive function of the system. It can be
used to derive, for example, the names of use cases (see Section 4.2): receive order, forward
order, and complete order.

3.4.1.6 Roles

Similar to functions, roles of objects can be interesting for information structure models.
These roles are then defined as separate classes. Examples are:

 Driver: a person in the role of the driver of a car

 Residence: the address of the first residence of a person

There is another alternative for modeling roles in the information model. More information
about this alternative can be found in Section 3.5.1 and Section 3.7.1.

3.4.1.7 Defining the Meaning of Terms

An important property of an information model is that the terms defined in the model are
placed in context (see Section 3.1). Together with the definition of the attributes, this means
that a large part of the meaning is generally already defined. If additional descriptions are
necessary, textual additions can be defined, which are then placed in a relationship with the
corresponding class.

Figure 12: Class and natural language definition

24 Information Structure Modeling

3.4.2 Attributes

Attributes are used to specify classes more precisely, which means that defining attributes
enriches the corresponding diagrams with additional semantics. This is very important in
requirements modeling.

3.4.2.1 Syntax and Semantics

Figure 13: Class with attribute

The attributes are defined within the scope of the class. The following components are al-
lowed (represented in Backus-Naur form)

[/] Name [: type] [multiplicity]] [= default]

 Name: the name of the attribute, which is obligatory

 Data type: the data type of the attribute; this is optional and is described in Section
3.4.2.4

 Default: the value of the attribute set on creation of a new object of the class

 Multiplicity: can be used if the attribute can take on multiple values simultaneously
(e.g.: several first names); the same multiplicities are used as in the relationships (see
Section 3.5)

 Derived: the leading "/" indicates that the attribute value can be derived from other
values (e.g.: the age of a person can be derived from the date of birth)

The attributes specify domain-specific properties of a class that are relevant for the system
under development.

3.4.2.2 Heuristics for Determining Attributes

To distinguish between classes and attributes, check each noun which was found as a poten-
tial class (see Section 3.4.1). In each case, consider whether the noun is merely a property of
another class. If so, this noun is defined as an attribute of this other class.

Attributes are often identified as such because of wording in written or spoken text. Com-
mon types of formulations that indicate potential attributes of classes are the following:

3.4.2.2.1 Noun in Combination with a Genitive

Examples: the date of the order, the diameter of the circle, the color of the car

The names of the attributes and the corresponding class are already given in the formula-
tions. No further interpretation of the formulation is required.

3.4.2.2.2 Sentence Construction with: <class> has <attribute>

Example: a person has a date of birth; an address has a postal code; the process has a transition

time of ...

3.4 Modeling Classes, Attributes, and Data Types 25

This type of formulation is an indication of an attribute of a class or a relationship between
two classes. More information about the distinction between whether something is an at-
tribute of a class or a relationship between classes can be found in Section 3.4.2.3.

3.4.2.2.3 Adjective in Combination with a Noun

Example: a fast car; a large display; a huge bank account; a red car; a black list

This type of formulation usually indicates a concrete instance of a class (car fast). We have
to determine which attribute of the class is meant (e.g., size of display = large) (see Figure
14).

Figure 14: Modeling variations for adjectives with nouns

3.4.2.2.4 Sentence Structures with: <class> is <attribute value>

Example: If the person is an adult; if the application is approved; ...

In this case, only a value of an attribute is specified. Again, further analysis is necessary be-
cause in the examples above, classes are compared with attribute values. However, the val-
ues apply to attributes of the class and not to the class itself (e.g., approved is a value of ap-
plication status).

3.4.2.2.5 Differentiating Objects

In addition to the formulations presented, attributes can also be derived from a required
property of objects in the object-oriented paradigm: objects always have to be unique in
their context.

This uniqueness must be achieved by using different values of the attributes of objects. At
any time, the combination of the attribute values must be different between objects of the
same class. Only then can the objects be uniquely distinguished for a user of the system.

Example: Modeling the object Peter Schulz with only two attributes (first name, last name) may

not be sufficient to distinguish it from another person with the same name. If the class person al-

so has the date of birth as an attribute, its objects may be clearly distinguishable (i.e., another

person with the same name but born on a different day).

3.4.2.3 Class or Attribute

The distinction between a class and an attribute is not always easy. If there is any doubt as to
whether an identified term should be represented in the information model as a class or an
attribute, then the term should first be modeled as a class. In contrast, if the term identified
is simple, unstructured data such as text, dates, numbers, or Boolean information, then the
term should be represented as an attribute in the information model.

26 Information Structure Modeling

For structured information, the following heuristic is helpful: as soon as a structured form of
this information belongs to more than one other object, it should be modeled as a separate
class.

The example in Figure 15 shows the difference for an address. Objects of the class address
can belong to multiple objects of the class person. These objects share an address. Changes to
an address affect all persons that are associated with that address. In contrast, the addresses
in the second part of the example are completely independent.

Figure 15: Class or attribute

3.4.2.4 Information Modeling for Existing Systems

Existing systems have a rich pool of resources that can be used to create an information
model. They help to identify not only classes and attributes but also relationships and multi-
plicities.

Possible sources:

 Logical or technical information model (entity-relationship models)

 Interface specification

 Description of a data warehouse

On one hand, the challenge with this existing information is—as with any system archeolo-
gy—that the information has to be validated and checked for accuracy. On the other hand,
we should avoid including technical implementation attributes (technical identifiers and op-
timizations) in an information model.

3.4.3 Data Types

Requirements modeling with UML class diagrams distinguishes between three kinds of data
types: primitive data types, structured data types, and enumerations.

3.4.3.1 Syntax and Semantics

The syntax for data types is similar to the syntax for classes. The name is mandatory. Further
information can be added to determine the allowable set of values of attributes.

3.4 Modeling Classes, Attributes, and Data Types 27

Figure 16: Examples of data types

3.4.3.1.1 Primitive Types: Unstructured Data Types

The primitive data types are unstructured and thus the simplest data types. They represent
simple data types such as a number, Boolean value, string, etc.

UML has a number of pre-defined primitive data types:

 Boolean: a Boolean value, can be TRUE or FALSE

 Integer: a whole number

 Float: a floating point number

 Character: a single character

 String: a sequence of characters

Depending on the application, it may be useful to specify more primitive data types, that is,
to define data types that do not require more in-depth definition.

Example: String50. It is clear, without further description, that a string of length 50 is meant.

3.4.3.1.2 Structured Data Types

This kind of data type allows the definition of structures, that is, the definition of complex
data types that are composed of more simple data types. These are always very specific to a
certain application area. UML specifies only the mechanism for defining such data types and
therefore does not contain any concrete data types. Figure 17 shows several examples.

Figure 17: Example for the modeling and use of data types

As the example in Figure 17 shows, these data types can be defined hierarchically. The end
point of the hierarchical definition is primitive data types or enumerations.

3.4.3.1.3 Enumerations

If the domain of an attribute can be specified by a denumerable list of acceptable values, this
data type can be defined as an enumeration. Figure 18 shows two examples of the definition
of an enumeration type.

28 Information Structure Modeling

Figure 18: Enumerations

The above example is a typical case of the use of an enumeration: the definition of a status
(for an application). However, the definition of this data type is redundant when a state ma-
chine for the class "application" is available (see also Section 4.4.4). Therefore, only one of
the two should be included in a requirements model.

3.4.3.2 Heuristics for Determining Data Types

When creating an information model during requirements engineering, we have to decide
whether it is useful to model the data types of attributes of a class at this point in the project.
The advice here is to model a data type immediately (preferably a primitive data type). Dur-
ing further modeling, this can be redefined or refined into a more complex data type, or even
a stand-alone class as required. If necessary, the data type can be specified in more detail by
textual requirements.

The next question would then be to identify more information about the data type. For enu-
merations, the answer is obvious: we identify the possible values of the attribute and list
them in the enumeration. For structured data types, the necessary information is found in
the domain of the application. This is similar to the question for identifying the necessary at-
tributes of a class (see Section 3.4.2).

3.4.4 Recommendations for Modeling Practice

3.4.4.1 Modeling Tip: Attribute Constraints and Textual Requirements

If the UML options are insufficient or the results are not "easy to understand", we can add
textual requirements.

Figure 19: Modeling attribute constraints

3.4.4.2 Modeling Tip: Views of Things

In the language of project stakeholders, a term is often used implicitly for several things or
views of one thing (homonym). For example, the request may be used as a homonym for: the
empty paper form, the completed document, and the signed document or the data in the sys-
tem. The diagram must clearly state which meaning the modeled terms have. Stereotypes
may help to clarify the situation.

3.5 Modeling Relationships 29

3.4.4.3 Modeling Tip: Length vs. Number of Strings

When attributes of a class which contain text are defined (e.g., a person's name), then the
question of the maximum length of the string arises. Multiplicity is often misused in this
case. According to UML, first name:string[20] means there are 20 first names of the type
string. This does not define a string of length 20. We can resolve this ambiguity problem in
UML by defining a special data type.

3.4.4.4 Outlook: Specification with OCL

For the exact definition of constraints, OCL (Object Constraint Language) from OMG
[OMG2012] provides the possibility of a more formal specification which, however, is not
always easy to understand. The condition that a customer must be 16 years of age or older
could be formulated as an OCL constraint as follows: context Person inv:

self.Client=true implies self.age >= 16

3.5 Modeling Relationships

A key component of an information model is the relationships. They are represented as a
connection between classes and express how (i.e., with what meaning) the objects of the
specific classes are related to each other. The most commonly used relationships in the
modeling of requirements are simple relationships (binary associations), aggregations, and
compositions.

3.5.1 Simple Relationships (Binary Associations)

Simple relationships are drawn between classes and describe the relationship which two
objects have to each other. The two objects can thereby be instances of two different classes
or of the same class.

In addition to simple relationships, UML provides n-ary relationships which connect multi-
ple objects. However, these are not discussed further in this document.

3.5.1.1 Syntax and Semantics

Binary associations are modeled as a line between the corresponding classes. In order to
give this line a meaning, additional information is added. Figure 20 considers the classes
person and address. The model should state that a person has exactly one address assigned
where they live and also exactly one other address to which correspondence should be sent.
An address can be assigned to more than one person as the correspondence address or resi-
dence.

Figure 20: Example of modeling simple relationships

 Name: specifies the name (meaning/semantics) of the association in a verb phrase

 Reading direction: direction in which the name is to be read

30 Information Structure Modeling

 Multiplicity: is listed at each end of the association and indicates how many objects the
other object may or must be related to

 Role: refers to the role played by the object to which the role is attached with respect to
the other object

To identify this additional information for relationships, it is helpful to imagine the objects,
especially when determining multiplicities.

Figure 21: Relationships of the objects

In addition to the requirements contained in the information model, associations are often
the basis for deriving functional requirements.

Example: Requirement without the use of associations

Show address

A functionality, as in the example "Show address" above, which refers to only one object
("Address") without considering its relationship to other objects, is often incomplete. Rela-
tionships are very useful for defining the context precisely and thus reducing the set of ob-
jects to the desired/required quantity.

Example: Requirement with the use of associations

Show the correspondence address of the person who is the contact for the company

Associations offer the opportunity to move through the information model. This ability to
navigate through the information model also shows the importance of the unique name for
the associations between classes, especially when multiple relationships exist between two
classes. For this purpose, we refer to either the name of the association or a role at the end of
the relationship. When formulating requirements, role names can be used instead of the
class names (see the example and Figure 9).

For a requirements engineer, multiplicities are an important tool for verifying the details of
the quantifiers in the requirements:

Examples:

Requirement 1: Show the person

Requirement 2: For this person, show the company for which it is the contact person

3.5 Modeling Relationships 31

The formulation of requirement 2 seems to assume that there is exactly one legal entity. The
multiplicities in the diagram show a different picture. For a requirements engineer, the fol-
lowing questions regarding the requirements and the association arise:

Is the multiplicity of the association correct? If it is incorrect, it must be changed. If it is cor-
rect, then the following questions must be answered:

 What should happen if a legal entity is assigned?

 What should happen if more than one legal entity is assigned? How is the one you want
to display selected (e.g., the one with the youngest or oldest date of incorporation)?

3.5.1.2 Heuristic for Determining Simple Relationships

3.5.1.2.1 Linguistic Formulations

Relationships between classes can be discovered by certain statements in the natural lan-
guage. Statements such as "A departmental manager manages a department" can be ex-
pressed directly in the diagram. Depending on the formulation of such statements, they are
drawn in different ways in a class diagram:

Verbs binary association, association name, read direction

"Head of department manages department" or "Departments are managed by departmental
heads".

Verbs in an active or passive formulation indicate the meaning of the association. In a model,
verbs in active form are preferred. When requirements are the basis for the determination,
then verbs (= functionality) must be critically queried.

Example:

Employee orders product

In the information model, this would only be included as an association if the information
about which employee has ordered which product is relevant.

Nouns role

"Employee is head of a department"

If two concepts are connected with a noun, then it is usually a role that sets one of the two
terms over the other. If the role contains properties, then this role could also be modeled as
a separate class (see Section 3.7.1)

Quantifiers multiplicity

"A natural person can be a contact for any number of legal entities"
"For a legal entity, exactly one natural person is the contact"

Quantifiers specify the associations found and are absolutely necessary for both ends of the
relationship. A statement mentioning "a/one" should always be questioned with "exactly
one?".

3.5.1.2.2 Classes without Further Reference in the Class Diagram

Each class in the information model must be in a relationship with at least one other class
(via a simple relationship, generalization, an aggregation, or a composition). If classes exist
that are not in a relationship with any other class, this gap needs to be closed. This means
that the classes and the relationships between them form a network.

32 Information Structure Modeling

3.5.2 Aggregation and Composition

For certain types of relationships (more precisely, the semantics of relationships), UML has
specific notation elements.

3.5.2.1 Syntax and Semantics

In UML, a "part/whole" relationship can be represented with a line on which a diamond
shape is located at the end with the class that represents the whole.

Figure 22: Example for the modeling of aggregations and compositions

This is primarily a relief when modeling and reading the diagrams because the importance
of the association is clear immediately. A special form of aggregation is the composition.
Here, the part/whole connection is particularly strong. It is used to specify that deleting the
whole also deletes the parts.

3.5.2.2 Heuristics for Determining Aggregations

Because aggregations and compositions are considered as specific types of a relationship,
the heuristics for identifying relationships (see Section 3.5.1) can also be used to identify ag-
gregations and compositions. From the perspective of the specific meaning of such associa-
tions, aggregations and compositions are indicated by keywords that relate to statements
about part/whole dependencies.

Verbs

Typical verbs that indicate aggregation or composition relationships are: consists of; is com-
posed by; contains; results; has. For example: "A company consists of departments“.

Nouns

Aggregations and compositions can also be identified via role formulations. Depending on
the meaning of the relationship, these are: part, whole, component.

For example, "A department is part of a company".

3.5.3 Association Classes

3.5.3.1 Syntax und Semantics

A mixture of associations and classes is the so called association class. By using association
classes it is possible to allocate properites directly to concret associations between classes.

3.5 Modeling Relationships 33

Person Adresse

Verwaltungsinformation

Erstellt am

Erstellt von

*

wohnt

*

Person Address
lives

Management Information

Created on
Created from

Figure 1: Simple Example of modeling management information with association classes

In the example shown above the link between object of the typ „Person“ and a particular ob-
ject of the typ „Address“ has been extended by a object of the typ „Management Informati-
on“. The object of the type „Management Information“ enriches the association by adding the
information when and who has created the corresponding relationship. In this case, to any
relationship between objects of the type „Person“ and „Address“ an additional object exists
holding the correponding management informationen. Due to the semantics of association
classes no additional multiplicities are models.

The modeling of assocationen classes is controversly discusses as novice user interprete
such models often in a wrong way. In doubt and in order to validate the interpretation such
diagrams can also be models with „normale“ classes and associations between them.

Person Artikel

Bestellung

Bestelldatum

Person Artikel

Bestellung

Bestelldatum 0..*

1

0..* 0..*

1

0..*

Person Product

Date

Order

Person

Date

Order

ProductPerson

Order

Date

Figure 2: Transformation of modeling of association classes by using „normale“ classes

The example at the right hand side in the figure above is sometimes misinterpreted as: A
person can order serveral products when placing an order. For a better understanding Figu-
re 25 shows a valid example for the instantiation of the class diagramm displayed at the left
hand side of Figure 24.

34 Information Structure Modeling

P1: Person

O1: Order

O2: Order

O3: Order

O4: Order

P2: Person

Pr1: Product

Pr2: Product

Figure 3: Exaple for a valid instantiation of the class diagramm in Figure 24 (left hand side)

The example shown above can be extended concerning the fact that a person can order more
than one items of a particular product. For instance, by adding a attribute „quantity“ to the
class „Order“.

3.5.4 Practical Advice for Information Modeling

3.5.4.1 Modeling Tip: Constraints of Relationships and Textual Requirements

If the UML options are insufficient or the results are not "easy to understand", then we
should use textual requirements in addition to the model.

Figure 26: Modeling constraints of relationships

3.5.4.2 Modeling Tip: Attribute or Association

Two classes that are connected to each other with a 1:1 or 0..1 relationship can occur but
this situation is rather unusual. In this case, we should question whether one of the two clas-
ses can be converted into an attribute of the other class.

3.5.4.3 Modeling Tip: Navigability vs. Reading Direction

When modeling classes, there are two representations of relationships that can be interpret-
ed as "directions" with a very different meaning (not counting the triangle of the generaliza-
tion that could also be misread as a direction arrow). One representation is the reading di-

3.5 Modeling Relationships 35

rection of the name of the association (i.e., the small arrowhead next to a verb) (see Section
3.5.1), as shown in the upper part of the following figure.

Figure 27: Reading direction vs. navigability

The other representation is the navigability as shown at the bottom of the figure above. The
latter states that for a person, we can get the address at which he resides but not vice versa.
This navigability is important in the realization. In requirements engineering, however, it
plays a minor role.

3.5.4.4 Modeling Tip: Different Interpretation of Multiplicities (Versioning, Historiz-
ing, Dynamics)

Multiplicities appear to be defined very precisely. However, they can lead to discussions or
different interpretations.

Figure 28: Unclear multiplicities

0..* can be interpreted as:

 *: Person has (over time) many identity cards (expired, lost)

 0: does not need an identity card (does not have one or has lost it)

 0: A person always has an identity card but the person is created first and then the
card. Therefore, there is a period before the identity card is created when a person ex-
ists without an identity card.

An information model always shows a static and consistent structure of the information. Ac-
cordingly, there is no intention to resolve intermediate states of the information. Other tem-
poral aspects, such as versioning or history, may well be relevant and modeled accordingly.
Figure 29 shows a possible modeling of a simple history.

Figure 29: Resolution of unknown multiplicities

3.5.4.5 Outlook: Specification with OCL

For the exact definition of constraints, OCL (Object Constraint Language) from OMG
[OMG2012] provides the possibility of a more formal specification which, however, is not

36 Information Structure Modeling

easily understandable. The condition that each person in the role of purchaser must have a
delivery address could, for example, be expressed by the following OCL constraint:

context order

inv:self.purchaser->notEmpty()implies

self.Purchaser.DeliveryAddress->notEmpty()

3.6 Modeling Generalizations and Specializations

3.6.1 Syntax and Semantics

The common properties and relationships of multiple classes can be summarized by a gen-
eralization. Models can thus be simplified. The corresponding classes are connected with a
line with an arrowhead at one end. The class that the arrowhead points to represents the
generalized concept. If the class has no objects (i.e., no instances of this class), then it is
called an abstract class. To illustrate this in the diagram, the name of an abstract class is dis-
played in italics. Figure 30 shows a simple example for the modeling of a generalization.

Figure 30: Example for the modeling of a generalization

Generalized terms should be used with caution, as there is a risk of misunderstandings. Ab-
stract and non-abstract generalizations have a different meaning for requirements: in this
context, abstract generalizations are—in contrast to non-abstract generalizations—
representative of each of their specializations.

The system must provide the user with the ability to create clients <abstract generalization>.

This corresponds to:

1) The system must provide the user with the ability to create companies <Specialization1>.

2) The system must provide the user with the ability to create persons <Specialization 2>.

When "Client" is not an abstract class (i.e., it is not italicized), the above requirements allow
the creation of a client object (without specifying whether the client is a company or a per-
son)

3.6.2 Generalization Sets and their Constraints

Generalization sets offer the option of combining different aspects of a generalization to
form groups of subtypes. Figure 31 models two generalization sets (contact kind and contact
type) with associated constraints.

3.6 Modeling Generalizations and Specializations 37

Figure 31: Example for modeling generalization sets and constraints

In UML, the specification of properties of such a generalization set is annotated by con-
straints in curly braces. Typical constraints are:

 Incomplete: The modeled subtypes are not necessarily complete. For example, manu-
facturer could be added as a contact kind.

 Complete: The modeled subtypes are complete. No other contact types are possible.

 Disjoint: An instance can only be one of the subtypes. For example, a contact is either a
person or a company, but never both.

 Overlapping: An instance can belong to more than one subtype. For example, a contact
may be a customer and a supplier.

3.6.3 Heuristics for Identifying Generalizations

3.6.3.1 Linguistic Formulation

As in the other areas, generalizations and specializations can also be identified by specific
linguistic formulations.

"The dog is a kind of animal"; "A kind of animal is a dog"; "The boss is a special employee";
"Typical payment methods are bank transfer or billing"

3.6.3.2 Uniformity

Generalized classes can be created for classes that have many of the same attributes and
possibly also have the same relationships to other classes. This can lead to generalized class
names that are not used in the domain.

3.6.4 Recommendations for Modeling Practice

If all specializations have no attributes, modeling via a property "type" or "kind" is possible.

38 Information Structure Modeling

Figure 32: Empty specializations

The choice is determined by the domain experts. If the names of the specializations are an-
chored in the language of the stakeholders as separate terms, then these should be modeled
as independent concepts. If they play a rather subordinate role, an enumeration is preferred.

3.7 Other Modeling Concepts

3.7.1 Typical Concepts and Patterns of Information Structure Modeling

In information models, similar structures are encountered again and again. Possible solu-
tions for such structures are called patterns. The main analysis patterns for information
models are:

 Item-item description, for example, for a book and specific copy of a book; product and
article; invoice and invoice item [CoNM1996]

 Party (also known as a role pattern) [Fowl1996]

 Composite, e.g., for organization or file system [GaJV1996]

3.7.2 Derived Associations

Derived associations are associations that can be derived from existing associations and are
therefore redundant. Similar to derived attributes, these associations require a derivation
rule. In the simplest case, this is supplemented textually and can simplify the formulation of
the requirements because the derivation rule only has to be defined once. An example is
shown in Figure 33.

Figure 33: Derived associations

3.7.3 Scope of Generalization Diagrams

Generalizations can quickly form whole trees with multiple levels. Once such a tree consists
of more than 7 ± 2 elements, it should be maintained in a separate diagram.

3.8 Further Reading 39

3.8 Further Reading

Creating information models

 Martin, J.: Information Engineering, Book I – Introduction. Prentice Hall, Englewood Cliffs,
1989.

 Shlaer, S.; Mellor, S.: Object-Oriented Systems Analysis – Modeling the World in Data. Pren-
tice Hall, Englewood Cliffs 1988.

 Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide. Addison-
Wesley 2005.

 DeMarco, T.: Structured Analysis and System Specification, Yourdon Press, Prentice Hall,
1979.

 Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference Manual,
Addison Wesley, Reading, MA 2004.

Analysis patterns for information models

 Coad, P.; North, D.; Mayfield, M.: Object Models: Strategies, Patterns, and Applications,
Prentice Hall, 1996.

 Fowler, F.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, MA 1996.

 Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Pattern - Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, 1994.

 Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide. Addison-
Wesley 2005.

41

4 Dynamic Views

Program = data + algorithms! With this simple statement, Nicholas Wirth has summarized a
complex fact in a memorable way. Applying this equation to requirements, in this chapter we
will focus on the desired or required functionality of a system and its behavior (following the
description of information models in Chapter 3).

4.1 Dynamic Views of Requirements Modeling

In contrast to the information models, which can essentially be expressed by one diagram
type (except for syntactic variants), the dynamic views offer a lot of different abstraction cri-
teria for specifying different aspects of the functionality. This chapter looks at four types of
dynamic views in requirements modeling which are summarized in the following table (the
last one will be addressed in Chapter 5 of this document).

View Meaning

Use case view

Decomposition of the functionality of the entire system from a user perspective
into processes triggered externally or by time (or interactions or sequences of
functions), each leading to a specific added business value for one or more actors
in the system context; presented in the form of use case diagrams including textual
use case specifications for each use case.

Control flow-oriented view
Specification of sequences of required functions of a system, whereby the empha-
sis is on the sequence of execution. This view is mainly represented by UML activity
diagrams with explanatory activity descriptions.

Data flow-oriented view

Specification of the required functions of a system, including input/output data
dependencies; represented classically by data flow diagrams with explanatory de-
scriptions of the functions and data flows between the functions. UML activity dia-
grams with appropriate extensions can also be used.

State-oriented view

Specification of the event-driven behavior of a system, including states of the sys-
tem, events, and conditions for state transitions.
Represented by state transition diagrams or Statecharts with explanatory descrip-
tions of states, functions, conditions, and events that trigger state transitions.

Scenario view
(Chapter 5)

Specification of interactions between actors (people, systems) in the system con-
text and the system under development (SuD) that lead to an added business value
for one or more actors. Scenario modeling can be done by way of example (e.g., to
support the elicitation of requirements) or with a claim to completeness, i.e., all
the scenarios which are to be supported by the SuD are modeled.

Table 1: Dynamic views in requirements modeling and their meaning

4.2 Use Case Modeling

Use cases provide a method for systematically describing functions within the defined scope
from a user perspective. This section introduces the basic elements of use case models and
focuses on a deeper understanding of how to identify and specify use cases.

42 Dynamic Views

4.2.1 Purpose

There are many approaches available for breaking the functionality of a whole complex sys-
tem down into its parts. The approach of breaking down the overall system into processes
which provide added value for persons or systems outside of the system has been applied
successfully and in many cases (cf. [McPa1984], [JCJO1992], [HaCa1993], [Cohn2002]). A
wide variety of concepts and terms is used for such processes, for example EPC (Event-
driven process chain), use case, or user story in agile practices.

We consider use case models as a representative of these models. Use case models consist of
use case diagrams with associated textual use case specifications. The use case diagrams
provide a graphical overview of the required processes of the system and their relationships
to actors in the system context. A use case specification specifies each use case in detail by,
for example, describing the possible activities of the use case, its processing logic, and pre-
conditions and postconditions of the execution of the use case. The specification of use cases
is essentially textual—for example, via use case templates such as recommended in
[Cock2000].

The main purpose of use case models is to decompose a complex system into such parts that
can be specified afterwards in detail as independently as possible from each other: divide
and rule. Since the processes (= use cases) can be derived from the context, this decomposi-
tion is neutral with respect to the (existing or planned) inner structure of the system. This
means that it does not take into account any internal organizational boundaries or software
or hardware limitations of the system under development, focusing instead on the external
perspective.

4.2.2 Model Elements for Use Case Diagrams

Figure 31 shows the main model elements of use case diagrams, as used in UML. They are
used to express the system boundary, actors, use cases, and the relationships between actors
and use cases. With regard to the concept of actors, note that actors are always stakeholders
in terms of requirements engineering but many stakeholders are not actors because they
will never work with the system in operation, even if they want to have a say about the be-
havior of the system (see [Cock2000]).

Besides the stick figures, various graphical stereotype symbols can be used to express ac-
tors. Among others, the use of a clock symbol for time-triggered processes has proven of
value, as shown in Figure 32.

Note: by drawing the system boundary, is it easy to distinguish clearly between "inside" and
"outside" in use case diagrams. Because of this and since actors are always outside the
boundary, it is easy to recognize actors with any kind of representation even without the
stereotype << actor >>. Many modeling tools allow you to display or hide the stereotype
names like << actor >>. Figure 33 makes use of that simplified notation.

4.2 Use Case Modeling 43

Notation

System boundary
Name

Name Actor

Name
Use case

«actor»
Name

Name Meaning

An actor can be a person, a company or organization, or a
software or system element (hardware, software or both).

The (unnamed) line between the actor and the use case
indicates that this actor interacts with this use case.

Association

Functionality of the system, needed by an actor that provides
value to the actor. The name should contain a verb, as it
describes a functionality, and an object, to which the
functionality refers, e.g., "monitor velocity".

The rectangle depicts the scope of the system. Actors are
outside the scope. Use cases are inside the scope.

(Alternative)

Name

Figure 34: Model elements of use case diagrams

On the right-hand side, Figure 35 shows an example of a use case diagram with these four
basic elements—the system boundary (scope), actors, use cases, and associations.

Early
Warning
System

Sensor

Operator

Admin

Statistics
System

Day Results

Protocol

Warning
Sensor
Data

Operator
Request

System
Messages

Figure 35: Example of a context diagram (left) and the corresponding use case diagram (right)

4.2.3 Use Case Diagrams and Context Diagrams

These two diagram types have similar content but different priorities. Both define a name
for the system under development and the system boundary (i.e., the distinction between
the scope and context) but with different precision.

The focus of the context diagram is the precise functional definition of the interfaces to all
neighboring systems. Good context diagrams contain (in addition to the system as a black
box) all neighboring systems (people, IT systems, devices) that act as a source or sink for in-
formation of the system under development.

Early Warning System

Read
sensor data

Sensor

Operator

Update
thresholds

Show detailed
Info

Acknowledge
alarm

Output compr.
Data

Output
warning

Output
protocol

Admin

Statistics
System

44 Dynamic Views

If a context diagram exists in which all neighboring systems and actors of the system under
development are shown, it may be sufficient to create a use case diagram that only contains
actors which trigger the execution of use cases. These actors are called process-triggering
actors; they justify the existence of use cases. In other words, without the respective actor
there would be no demand for this use case. Therefore, if a context diagram exists, further
actors that are involved in the use case (i.e., during the execution of the process after the
trigger by an actor) are not necessarily drawn in the use case diagram. This would only in-
crease the complexity of the use case diagram and detract attention from the fact that the
use case view mainly serves to decompose the overall functionality of a system into disjoint
processes from a user perspective.

Figure 36: (a) Use case diagram with all neighboring systems, (b) Use case diagram with inputs and outputs

Recommendation 1: Use the strength of both diagram types to obtain on one hand an inter-
face description that is as complete as possible (using the context diagram), and on the other
hand, to achieve a rough outline of the functionality from a user perspective (in the form of
use cases) that provides a good overview of the required overall functionality and allows a
separate, additional specification of each use case.

Recommendation 2: If you only model use case diagrams without a context diagram (e.g., be-
cause the tool used does not support explicit context diagrams and the context diagram

Early Warning System

Read
sensor data

Sensor

Operator

Update
thresholds

Show detailed
Info

Acknowledge
alarm

Output compr.
Data

Output
warning

Output
protocol

Admin

Statistics
System

Early Warning System

Read
Sensor data

Sensor

Operator

Update
thresholds

Show detailed
Info

Acknowledge
alarm

Output compr.
Data

Output
warning

Output
protocol

Sensor
Data

User need

Alarm
Acknowledgement

Admin

Statistics
System

Day
Results

Warning

Protocoll

4.2 Use Case Modeling 45

should not be expressed with a UML class diagram), then all neighboring systems of the sys-
tem should be included in the use case diagrams. The additional use of graphical layout op-
tions allows an easy distinction between actors triggering use cases and other affected
neighboring systems (e.g., by arranging the actors on the left and the other neighboring sys-
tems on the right). However, such an "extended use case diagram" still does not have the ex-
pressive power and precision of a context diagram because in the use case diagrams, the
identifiers of the inputs and outputs are missing. These could be written next to the directed
associations between actors and use cases (see Figure 36, b). If we do this, however, the dia-
gram becomes overcrowded and is more difficult to understand. This weakens the major
purpose of the use case model.

4.2.4 Finding Use Cases

In order to find the relevant use cases of the system, it is often useful to focus first on the
triggers for possible use cases. Triggers of use cases are events in the system context to
which the system under development should adequately respond by executing a process
which provides added business value to one or more actors in the system context.
[McPa1984] divides these triggers into two categories:

 External triggers: An actor (e.g., a neighboring system) wants to trigger a process in
our system. Our system will notice this when data coming from the neighboring system
crosses the system boundary. For example, "A guest wants a room in a hotel system".
Once the request is received (i.e., the corresponding event in the system context hap-
pens), the hotel system should offer a suitable room to the guest.

 Time triggers: It is time to execute a process in our system, for example, at specific
times or on specific calendar days. By using time events to start a process, there is no
need for data to cross the system boundary. It is only necessary that the specified point
in time is reached. For example, in the hotel system: "It is 6pm and thus time to cancel
all no-shows and make the rooms available for sale again." Monitoring of internal sys-
tem resources is also considered as a time event. For example, "It is time to reprint our
hotel catalog."

4.2.4.1 Continuity of Processes from System Boundary to System Boundary

Each use case should be modeled in a way that the process—once triggered—is considered
until its end. The process of a use case should not be interrupted within the system (e.g., at
already known software component or organizational boundaries within the system). The
granularity of a use case is therefore determined by the complete reaction of the system
under development to the trigger from the system context, that is, the primary actors get
their added business value after the complete execution of a use case.

4.2.4.2 Pragmatic Rules for the Granularity of Use Cases: The 80-20 Rule

During use case modeling, the question of adequate granularity for use cases is often raised.
In which situations should different use cases be merged into one use case? A strong indica-
tion for merging use cases is the criterion regarding whether all processes provide the same
added business value.

In large and complex systems, it makes sense to analyze the various use cases. In the case of
two use cases having 80% identical processes and similar added business values (e.g., when
the processes are nearly identical but are executed with different data), only one use case
should be modeled for both processes and the differences between the processes should be

46 Dynamic Views

documented in the use case specification (see Section 4.2.5). However, in the case of two use
cases having only 20% in common or if many different process steps are needed in the use
case description, then separate use cases should be modeled. In the case of a "similarity" of
50%, a decision is often difficult. Ultimately, the similar added business value should be the
determining factor for the decision about whether to merge multiple use cases.

4.2.5 Specifying Use Cases

The popularity of use cases can be explained by the fact that Ivar Jacobson has given the nat-
ural language back to the stakeholders for talking about their requirements. He proposed
describing the desired process of a use case in natural language. UML does not make any
suggestions about the style of use case descriptions. Over the years, many proposals have
been made to resolve the weaknesses of purely natural language process descriptions. In
particular, [Cock2000] suggests different levels of abstraction of use case descriptions for
different groups of readers.

The textual specification of a use case should document the essential inputs and outputs (i.e.,
data, see also Chapter 3) which are intentionally not shown in the use case diagram.

Detailed textual use case specifications should also describe at least the main flow of control
and, if applicable, alternative paths from the perspective of the primary actor (i.e., main and
alternative scenarios, see also Section 5.2). Furthermore, they should also specify precondi-
tions and postconditions of the use case execution, which can typically be characterized by
states and state transitions (see Section 4.4.1). In addition, possible exception events and as-
sociated exception scenarios should be documented (see also Section 5.2). Table 2 shows an
example of a template for the detailed textual specification of a use case.

Section Content

ID Unique identifier of the use case in the development project or program

Name Name of the use case in the model (this name is shown in the use case diagram)

Trigger Event that triggers the execution of the use case

Preconditions Preconditions that must be fulfilled before execution of the use case

Postconditions Set of postconditions that are fulfilled after successful execution of the use case

Input data Input data of the use case

Output data Output data of the use case

Result Result of the use case, i.e., the added business value which is provided to the ac-
tors after execution of the use case

Primary actor Actor who receives the significant part of the added value of the use case

Further actors Actors who are involved in the execution of the use case

Main scenario Normal sequence of activities (execution flow in 70% of all cases, for example).
See also Section 5.5.1.

Alternative
scenarios

Set of alternative activities. Each alternative process also leads to a successful ex-
ecution of the use case (e.g., in 30% of cases). See also Section 5.5.2.1.

Exception
scenarios

Set of exception scenarios. These scenarios are executed when an exceptional
situation occurs in the use case process. These scenarios ensure a controlled er-
ror and exception handling. See also Section 5.5.2.5.

Table 2: Example of a template for textual specification of use cases

4.2 Use Case Modeling 47

4.2.6 Structuring Use Cases

UML provides three additional means of expression for structuring the use cases of a system.
Figure 37 shows the notations for these three UML elements and briefly outlines their mean-
ing.

Recommendation: Although these structuring elements do exist in the syntax of UML, you
should use them very carefully and not too often. Avoiding too many includes, extends, and
generalizations keeps the use case diagrams easy to understand and serving their purpose.

More complex relationships between use cases can often be expressed in a more under-
standable and more precise way by using other diagram types, such as activity diagrams
(see Section 4.3.3). Both the inclusion of sub-processes (using "Include") and the condition-
dependent extension of use cases by sub-processes (using "Extend") can be expressed more
precisely in activity diagrams.

Notation

Include relationshipName Meaning

Extend relationship

The included process is a reused sub-process of both use
cases 1 and 2. The dashed arrow with the stereotype
<<include>> points from the including main process to the
included sub-process.

The sub-process extends the use case under conditions that
lead to special or exeptional cases. The dashed arrow with the
stereotype <<extend>> points from the extending sub-process
to the extended main process.

The main process is more precisely specified by
specialized processes. The specialization is, as in
information models, indicated by a hollow triangle at the
side of the generalized process.

Name

Name

Notation

Notation

Generalization relationship

Use-Case 1

Use-Case 2

Sub-process

<<include>>

<<include>>

 Extension points:
Disturbance

Use-Case 1

Sub-process
<<extend>>

[Disturbance]

Specialization 1

Specialization 2

Use-Case

Figure 37: Model elements for structuring use cases in use case diagrams

When applying the model elements mentioned above to structure use cases of a system, the
following rules of thumb should be considered:

 An include relationship can be used, for example, to explicitly document that several
use cases have an identical sub-process. Among other benefits, this saves extra work
during specification. Identical sub-processes can also be expressed by using activities
with the same name in the activity diagrams which document the process of a use case.
Doing this means that there are no additional elements in the use case diagram. The
use case diagram remains clear and legible.

 An extend relationship can be used to document that an additional sub-process must
be executed within the "normal" process of a use case under a certain condition. It is
important that the extension point, that is, the condition under which the sub-process
is executed in addition, is formulated as precisely and understandably as possible.
Since this is often only possible in the use case specification (or in the corresponding

48 Dynamic Views

activity diagram), it is useful not to model such an extension explicitly in use case dia-
grams.

 By generalizing (or specializing) use cases, we can express that specific processes of
one or more use cases can be generalized. In most cases, such relationships are mod-
eled when a use case diagram has multiple use cases whose specific processes can be
abstracted to a more general level. Figure 34 shows how to model a generalization. Ex-
perience shows that generalizations are rarely used in use case diagrams since this
form of abstraction is rather a concept of information structure modeling in which, for
example, common attributes are abstracted by the creation of superclasses (see Sec-
tion 3). The description of more abstract (generalized) processes compared to their
specific (specialized) forms is usually difficult in the context of use case modeling. This
model element should therefore only be used after careful consideration and with very
specific intentions.

4.2.7 Packaging Use Cases

For systems with a large number of use cases, it is possible to increase the readability of the
use case model by using the following methods

• Group the use cases according to their business subject

• Create a use case diagram for each group

• Locate the use cases of a group in the same part of the use case diagram

In UML, it is possible to package use cases (similar to packaging other elements of UML). The
criteria for packaging can be chosen freely. Usually, logically related use cases (e.g., use cases
with a similar added business value) or use cases relating to the same topic (e.g., all use cas-
es for warehouse management in an ERP system) are packaged. Packaging is mainly used to
improve handling and readability of a use case model with a large number of use cases.

4.2.8 Summary

Use case models are usually a first step in systematically understanding and specifying the
overall complexity of a system (from the context diagram). A textual use case specification is
associated with each use case. This specification is usually sufficient to describe the required
functionality for simple processes. For complex processes, this specification is the starting
point for the creation of more detailed diagrams that document the required behavior of the
system precisely. The corresponding diagram types are presented in the next sections.

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling
of Requirements

The core elements of the models from the dynamic view are the functions which should be
provided by the respective system. We identified these elements in the context diagram
and/or in the use case diagrams and subsequently specified them initially on a high level.

We will now specify the elements in a more detailed and more precise way by using UML ac-
tivity diagrams and data flow diagrams (as used, for example, in the Structured Analysis ap-
proach [DeMa1979]). Both diagram types will be introduced in this chapter.

The notation element for functions is (historically) different in the two diagram types (see
Figure 38) but the purpose of the two diagram types in requirements engineering is the

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements 49

same: a decomposition of the required functionality into smaller functions and the descrip-
tion of the interactions between the smaller functions to provide the functionality required
on the higher level.

Diagram type Notation

Activity Diagram

Data-Flow Diagram

Terms used

Process, Bubble

Activity, Action

Name

Name

Figure 38: Modeling of functions in data flow and activity diagrams

4.3.1 Purpose/Historic Overview

There are two basic approaches for specifying functions and their related interactions further:
data flow and control flow. Each of these approaches focuses on different aspects and the ap-
proaches are justified and explained in this section. This handbook describes only one repre-
sentative for each approach: UML activity diagrams for the "control flow thinking" and data
flow diagrams for the "data flow thinking."

One of the earliest models in IT is the flow chart (e.g., according to DIN 66001). Flow charts
were used to create program flow diagrams to visualize program logic (at code level). They
showed functions (as boxes), alternatives and branches (as rhombuses), and jumps (with an-
chor links). These diagrams supported programmers in understanding the structure of large
programs.

Function 1 Function 2 Function 3

Figure 39: Control flow between functions

In the late 1970s, books and publications on "Structured Analysis" [GaSa1977, DeMa1979,
RoSc1977] were published. At this point, the focus of analysis approaches changed from
considering the control flow to modeling the data flow. Data flow diagrams also examine the
functions of the system (usually represented as circles, in some notations as rectangles with
rounded corners, or as rectangles). Nevertheless, the (labeled) pointers between the func-
tion blocks have another meaning. The pointers in the data flow diagrams represent inputs
and outputs of functions, that is, the data flow between the functions and not the control
flow (see Figure 40).

50 Dynamic Views

Figure 40: Data flow between functions

In data flow-oriented views, all functions can be active simultaneously. The data flow speci-
fies only causal dependencies, meaning that a function can only work when its inputs are
available. However, in contrast to a control flow, no explicit sequence of the functions is mod-
eled.

With the introduction of UML in the late 1990s, the emphasis on control flow based on activity
diagrams was introduced again. UML activity diagrams are very suitable for modeling process
flows. They visualize the control flow between activities or actions of the system. If the se-
quence of activities is sequential, the follow-on action can only start when the preceding ac-
tion is completed. Alternative control flows can be expressed using decision points. Concur-
rent control flows can also be expressed.

In activity diagrams, functions are represented by boxes, control flows by arrows, and deci-
sion points by diamonds.

To summarize: complex required functionality can be modeled either in a control flow-
oriented way (by using activity diagrams) or in a data flow-oriented way (by using data flow
diagrams). We should focus not on the choice between the two diagram types but rather on
the fundamental thinking in data flows or in control flows. Both concepts are useful and as
explained below, you can also represent data flow thinking in UML activity diagrams and con-
versely, express relatively linear processes with data flow diagrams.

Note: in some modeling approaches of the dynamic view, such as in Petri nets, the proposal is
to model the data flow and control flow together in the diagrams. This often leads to a higher
complexity in the diagrams, making them difficult to understand.

4.3.2 Requirements Modeling with Data Flow Diagrams (DFDs)

Data flow diagrams are often used to model requirements from a data flow-oriented perspec-
tive. They model the functionality of the system under development using functions, data
stores, data/information flows, as well as sources and sinks.

4.3.2.1 Model Elements of Data Flow Diagrams

Figure 41 summarizes the main model elements of data flow diagrams.

Function 1

Function 3

Function 2

a

b

e

d

e

f

c

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements 51

Name

Name

Notation

Nodes

(Process, Function of the System)

Neighboring System/Actor

(also Terminator, Source or Sink)

Meaning

Depicts persons, organizations of technical

systems, equipment, sensors, actuators from

the system environment that are source of

sink for the information to / from the system

Depicts a desired functionality in the

system

Data flow

Depicts moving data (inputs, outputs,

intermediate results). Not only data flows can be

depicted but also material flows or energy flows.

Name

Name

Name

Depicts data at rest, i.e., information that is

stored for a certain period and that is not

directly flowing between functionsData store

Figure 41: Model elements of data flow diagrams

Figure 42 shows an example of a navigation system using the four elements that can be used
in data flow diagrams. It also provides further information on the semantics.

Figure 42: Example of a data flow diagram (part)

Data flows (such as GPS signal or desired destination) represent data in motion.

Data stores (such as route parameters, traffic messages) represent data at rest. Data in data
stores can be created and updated by one set of functions and read (non-destructively) by
another set of functions. It is persistent data. The period for which the data is to be stored is
not specified.

The fourth element (the rectangles, in the example "sensor" and "driver") represents neigh-
boring systems of the system under development. In the Structured Analysis approach, they
are called terminators or sources and sinks, depending on whether they provide inputs or
receive outputs. A terminator may be both a source and a sink. These terminators are usually
listed completely in a context diagram (see Section 2.2). From this perspective, the classical

Determine
Position

Traffic
Messages

Route
Parameters

Calculate
Route

Determine
Destination

Sensor

Driver

Suggested Route ...

52 Dynamic Views

context diagram is a specific data flow diagram in which all neighboring systems (or actors)
and all input and all output data are modeled; however, the functionality of the system under
development is compressed into a single node. If the neighboring systems (or actors) are al-
ready shown in the context diagram, then in the refined data flow diagrams, often no termina-
tors are shown and only the associated data flows at the system boundary are modeled (see
Section 4.3.6).

For data flow diagrams, the following fundamental rule is valid: all input and all output data
must be shown in the diagram.

The data flow specifies causal dependencies, which means that a function can only work when
its inputs are available. However, in contrast to a control flow, no explicit sequence of the
functions is modeled.

If there is a need to express the sequence of functions explicitly, data flow diagrams can be
supplemented by state transition diagrams. State transition diagrams use events and states to
express the sequence of functions. The collaboration between data flow diagrams and state
transition diagrams can be illustrated by the metaphor of a string puppet or marionette. The
functions in the data flow diagram correspond to parts of the puppet (such as arms, legs,
head) which can be moved freely and relatively independently of each other. A state machine
corresponds to the wooden cross with the strings to the moving puppet parts. The wooden
cross makes a (moving) connection between the moving parts of the puppet, whereby the
puppetry can restrict the possible movements of the puppet parts.

4.3.2.2 The Relationship between Data Flow Modeling and Use Cases, Control Flow
Modeling, and Information Structure Modeling

The data flow-oriented modeling of requirements using data flow diagrams has a substantial
connection with the context diagram, the use case view, and the information structure view.
Use cases are a tool for systematically specifying the functions within a defined scope from the
user perspective and at a high level. During requirements engineering activities, these func-
tions need to be detailed and decomposed into more detailed system functions and their de-
pendencies. The system functions of a use case, including data dependencies between the
functions and with actors (terminators), can be modeled using data flow diagrams. The more
detailed system functions can be identified during the functional analysis of the use case sce-
narios (see also Section 5.5.1.3). The structure of the data, which is modeled in the data flow
diagrams as data flows ("data in motion") and as a data store ("data at rest"), is defined in the
diagrams of the information structure view (see Section 3.1).

4.3.3 Requirements Modeling with Activity Diagrams (ADs)

UML activity diagrams can be used to model requirements from the control flow perspective.
Activity diagrams specify the required processing logic of use cases, system functions, or pro-
cesses that need to be delivered by the system under development so that it fulfills its pur-
pose during operation.

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements 53

4.3.3.1 Model Elements of Activity Diagrams

Figure 43 summarizes the main model elements of activity diagrams.

Acivity/
action

Start node

End node

Concurrency
(Synchronization bar)

fork

join

Control flow

Decision

Merge
(of alternative
control flows)

Name

[condition] Condition

Partitions
(activity partitions)

Notation Name Notation Name Notation Name

[Akteur] [Akteur]

[Actor][Actor]

Figure 43: Model elements of activity diagrams

Activity diagrams document the control flow between activities or functions of the system.
The control flow starts at the start node and ends at the end node(s). The diagrams can be
used to model sequential processes, branches of the control flow (using decision points), and
concurrent processes (using synchronization bars). Concurrent processes contain activities
which can be processed independently and therefore potentially at the same time. They are
particularly important for the system analysis because in real systems, many things can
happen simultaneously or independently of each other and not strictly sequential.

For the exact syntax and semantics of the notation elements, please refer to advanced books
on UML, such as [RuJB2004, BoRJ2005]. Figure 44 illustrates the use of the typical model el-
ements of activity diagrams and the essential syntactic rules with an abstract example.

Start node
End node

Decision

Merge

Fork

Join

Independent/concurrent

activities/actionsAlternative

control flows

Alternative

Kontrollflüsse

Figure 44: Using the model elements of activity diagrams

4.3.3.2 Modeling Object and Data Flows in Activity Diagrams and their Relationship to
Information Structure Modeling

Activity diagrams also allow us to model object or data flows, as shown in Figure 45 and Fig-
ure 46. This is done by inserting objects (see Figure 45) or parameters of the activities (see
Figure 46), as well as all accesses to data stores, are included in the diagram. In contrast, ac-
tivity diagrams do not define how much or how little data is displayed in the diagrams.

54 Dynamic Views

Figure 45: Modeling object flows in activity diagrams

The example in Figure 45 shows that the activity "Calculate Route" requires an input from
the objects "Maps" and "Traffic messages". However, it does not show the main output (the
route or several route suggestions). It also does not show any route parameters used (such
as "fastest route", "shortest route"). In contrast to data flow diagrams, where extreme im-
portance is placed on the completeness and consistency of the models, UML diagrams are
supposed to be "useful" mainly for the communication between the persons involved. The
completeness of the specification can be achieved with supplementary activity descriptions.

Figure 46: Modeling flows in activity diagrams using pins

The "pins" at the functions represent the inputs and outputs of the function. Thus, relation-
ships, such as that "Determine Position" creates a "Position" as output and "Calculate Route"
requires a "position" as input, can be represented graphically.

By using activity diagrams, the modeler can choose to include no data (objects) in the dia-
gram or to intentionally add some data (objects) to highlight certain aspects. It is important
to note that all inputs and outputs must be fully specified in the requirements specification
(at the latest in a textual specification of each function, see Section 4.3.5). The structure of
data or classes and their dependencies to each other should be modeled in the information
structure view (see Section 3.1).

4.3.3.3 Relationship of Activity Diagrams to Use Case and Scenario Modeling

Activity diagrams are often used to specify the processing logic of use case scenarios in de-
tail (see Section 4.2.5). Activity diagrams are created to visualize the scenarios, which are
processes with activities and processing logic. As long as the diagram remains understanda-
ble, the main scenario can be modeled jointly with the alternative scenarios and the excep-
tion scenarios as part of the same diagram.

Determine
Position

Enter
Destination

Calculate
Route

<<datastore>>
Maps

<<datastore>>
Traffic messages

Determine
Position

Enter
Destination

Calculate
Route

Maps

Traffic messages
Destination

Destination

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements 55

This is typically done by using decision points, where the control flow branches. Depending
on a condition, either the process logic of the main scenario or the process of the alternative
flow/exceptional flow is executed.

Figure 47 with an example of a control flow related to a use case. There are many decision
points where it is possible to switch between the scenarios. In this example, there is one
switching point before the activities "Enter destination address via keyboard" and "Say des-
tination address". These activities belong to different scenarios. Exceptional scenarios can be
modeled using decision points. Figure 47 shows this at the last decision point. It defines that
in the case of the exception "Map information not available" the activities "Issue error mes-
sage" and "Shut down system" are performed.

1. Switch on

navigation system

2. Determine

GPS coordinates

2a2. Enter

current postion

4. Enter destination

address via keyboard

4a1. Say

destination address

5. Calculate

route length

6. Display

route length

Fahrer Navigation system

[GPS coordinates

available]

[GPS coordinates not available]

3. Request

destination

4a2. Interpret

voice entry

2a1. Request

current position

5b1. Issue

error message

[Map information

not available][Map information

available]

[Desti-

nation

not

found]

ad Navigation

5a1. Issue advice

5b2. Shut down

system

Control flow of the

main scenario

Control flow of an

alternative scenario

Control flow of the

exeption scenario

on the event "Map

information not available"

ad Navigate to destination Total control flow

of the use case

Driver

Figure 47: Modeling the control flow of use cases using activity diagrams

To model exceptions which do not appear at a specific location in the control flow but in an
area of the control flow or during execution of the whole use case, signal inputs and outputs
and interruptible regions may be used (see Section 4.3.7).

For all UML diagrams, it is important that they are easy and understandable. In this case, they
should visualize the processing logic of a use case in a way that allows the reader to easily
recall the context. The recommendation is therefore to show only a few aspects (scenarios) in
one diagram. Further aspects (scenarios) can be shown in additional diagrams. It is also pos-
sible to create a diagram with the main scenario and further diagrams for each alternative
scenario together with the main scenario. The textual description may contain further details.

56 Dynamic Views

4.3.4 Decomposing or Combining Functions

Both types of diagrams (data flow diagrams and activity diagrams) support the decomposi-
tion of complex functions into simpler functions as well as the combination of simpler func-
tions to form more complex functions. In other words, data flow diagrams and activity dia-
grams can represent hierarchies of functions (see Figure 48 and Figure 49). This abstraction
mechanism allows us to structure complex issues in order to keep them understandable and
manageable. Within the dynamic view of requirements modeling, this hierarchy is a power-
ful tool for controlling the scope and complexity of the systems under development.

In Figure 48, the complex function "Determine Destination" of a navigation system is de-
composed into five steps (which are not specified in the example diagram).

 1.2 Determine Destination

1.2.1
1.2.3

1.2.2

1.2.5

1.2.4

Maps

Determine
Position

Traffic
Messages

Route
Parameters

Calculate
Route

Determine
Destination

Sensor

Driver

Suggested Route ...

Figure 48: Hierarchical decomposition and combination of functions in DFDs

In Figure 49, the complex activity B is decomposed into a detailed process consisting of five
activities. Conversely, the detail activities B1, B2a1, B2a2, B2b, and B3 can be combined to
form the aggregated activity B.

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements 57

Figure 49: Decomposition of a function in an activity diagram

In addition to content-based criteria (such as a technically strong relationship, which is often
manifested in finding a good name for the whole of the detail activities), very pragmatic cri-
teria are applied for decomposition or combination. One criterion is usually that the diagram
should fit on one page of a document. Furthermore, most methods recommend modeling no
more than 7 ± 2 functions per diagram.

4.3.5 Textual Function Specifications

How "far" (level of detail) should the functions be decomposed in data flow diagrams or ac-
tivity diagrams? In other words: when should the decomposition of functions stop? A simple
heuristic rule is the length of the required function description. If the precise specification of
the requirements of a function needs more than a half-page description, the function should
be refined again to avoid natural language specifications that are too large.

If the diagram already expresses everything that needs to be stated, then you have probably
decomposed too far. Models are easier to understand and read if you do not model the last
one to two decomposition levels and instead, specify the functions in text form (for example,
on half a page). It is also possible to refine a function (activity) by assigning a limited number
of three to seven simple, natural language requirements which specify the considered func-
tion in detail.

Example: Textual description of the function "Determine Destination" (see Figure 48)
Function: determine destination
Input: destination selection (done by the user of the navigation system), map
Output: desired destination
The function should provide the user with four options for selecting a destination:
- By entering an address using the keyboard
- By entering an address using voice entry
- By selecting from a list of stored addresses
- If a map is displayed, by selecting a destination via the touchscreen

For most users of these diagrams, the above-mentioned refinement level with a specification
on half a page is sufficient to understand the functional requirements and to systematically
derive test cases. This is especially true for testers who need to verify, after completion of
the system development, whether the system in operation implements the requirements
completely and correctly.

58 Dynamic Views

4.3.6 Ensuring Consistency between Requirements at Different
Abstraction Levels

A requirements model contains diagrams and textual specifications at different levels of ab-
straction (see Section 4.3.4). It is important to keep the requirements at the various levels of
abstraction consistent with each other. As part of the data flow view, such consistency condi-
tions have been introduced in the form of "balancing rules" (cf. [DeMa1979]). These con-
sistency rules between diagrams at various levels of abstraction can be adopted in the
same way for activity diagrams:

 Inputs and outputs of a function at one level must be consistently present as inputs and
outputs at the next lower level. This begins with the context diagram as the most ab-
stract representation. Each decomposition of the context diagram must include all in-
terfaces that were already included in the context diagram. The inputs and outputs at
the next lower level do not need to have the same name because data can be decom-
posed, as can the functions. For example, on the higher level, we find the output "statis-
tics" and at the next lower level "product statistics", "regional statistics", and "sales sta-
tistics". This decomposition is usually described in a glossary (or data dictionary) or
modeled in the information structure view. The ground rule is that the higher level
may contain more abstract concepts which are specified more precisely during refine-
ment.

 A special rule applies to the balancing of data stores: data stores should be introduced
only at that level of abstraction where they offer an interface between at least two
functions. In other words, a data store which is written and read by the same function
should be hidden inside the function (i.e., it should be shown only in a refinement of
this function). A data store should not be shown in a diagram where it is needed only
by one function. From the abstraction level at which the data store is first modeled, the
read or write access to this data store must be repeated at each lower level.

Even though activity diagrams usually do not model data flows and data stores, the balanc-
ing rules should be considered. The review/verification of requirements must cover both the
diagrams and the supplementary descriptions. You have to check that the refinement of dia-
grams and specifications is consistent at all the different levels.

4.3.7 Interruptible Activity Region and Receiving/Sending Messages

Using an example, this chapter introduces the last two model elements for activity diagrams
which are relevant for requirements engineering: the interruptible activity region and the
receiving/sending of messages:

Example: A user should have the option to select a person for whom the account transactions
should be displayed. While the transactions are displayed, the user can close the window or se-
lect another person. New transactions can also be received by the system. Thus, the content in
the window should be updated automatically.

In Figure 47, the desired behavior of the system is modeled using an activity diagram. The
box with dashed lines defines the interruptible activity region. All actions that are in the dia-
gram can be interrupted when signals are received (in the example, only the activity "Dis-
play account transactions"). If a signal receipt is modeled within the interruptible activity
region, all actions in the region will be interrupted when a signal is received.

4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements 59

To better distinguish the signals and to further specify the trigger of the signal, the stereo-
types "User action" and "System event" are used. After receipt of a signal (and the interrup-
tion of the current action), if necessary, another action is executed and the cycle can start
again (here: after receiving the signal "New transactions").

Figure 50: Example of the modeling of signals in an interruptible activity region

The user terminates the activity by clicking on "Cancel". To complete requirements analysis,
the activities in this diagram should be further specified by refined activity diagrams or tex-
tual specifications. The following must be specified: exactly how and in which sequences the
transactions are to be displayed; which options the user has for selecting another person.

Signals can also be created and sent (and not only received) as part of an activity diagram.
An example activity diagram for a type of function known as heartbeats is provided in Figure
51. A sign of life is sent out every second. This is triggered by a "Timer event" (the hour-
glass), which stops the flow each time for the specified time (one second). Again, an inter-
ruptible activity region is used to indicate when the heartbeat should stop.

60 Dynamic Views

Figure 51: Example of heartbeats

4.3.8 Comparison of Data Flow Diagrams and Activity Diagrams in
Requirements Modeling

The concepts behind both diagram types and the available model elements have a big influ-
ence on our thinking. In activity diagrams it is easy to express: "F1 is executed before F2"
(indicated by an arrow). In data flow diagrams, it is easy to express: "F1 produces D as out-
put data and F2 needs D as input data" (with a labeled arrow).

Activity diagrams Data flow diagrams

Emphasis on control flow (processing logic)
- Sequences
- Branches after decisions
- Concurrency (fork/join)

Emphasis on input/output dependencies
(data dependencies)

- Who produces what?
- Who needs what?

Inputs and outputs have less importance Control flow (processing logic) has less importance

In the case of sequential activities, the comple-
tion of one activity triggers the activation of the
next activity

Availability of inputs allows the execution of a func-
tion (process)

Strict time flow (apart from concurrent control
flows, i.e., fork/join)

No implied sequence (except for the causal depend-
ency induced by data dependencies)

Table 3: Differences in requirements modeling with data flow diagrams and activity diagrams

To summarize: the emphasis in the modeling languages has shifted back and forth over the
decades. It started with the emphasis on control flows (in flow charts and program flow dia-
grams). Later, the emphasis changed to data flows (in DFDs) and back to control flows again
(with UML activity diagrams). Both concepts—control flow and data flow—are useful tools

4.4 State-Oriented Modeling of Requirements 61

to support thinking, visualization, and specification of required functions and their depend-
encies. A requirements engineer should be familiar with both concepts and know how they
can be used. Due to the current dominant position of UML and the corresponding tools, you
will probably use activity diagrams. However, you should be able to deal with data flows and
data stores in this notation too.

4.4 State-Oriented Modeling of Requirements

Requirements are mostly derived from dynamic views of the system. The requirements of a
system also can be modeled using a state-oriented view, with a finite set of states and asso-
ciated state transitions. This view is particularly important for systems whose behavior:

 Specifically depends on what has been done already (history)

 Is strongly influenced by asynchronous events

4.4.1 Purpose

State-oriented modeling allows clear specification of preconditions and postconditions.
These conditions are required for the execution of a function (e.g., a use case or an activity in
the activity diagram). This type of modeling can be applied to the total system or parts of the
system. If it is used to model parts of the system, the model can be arranged in a similar way
to the use cases distinguished (see Section 4.2).

In addition to modeling the states of a system, state machines can also be used to model the
states of a branch-specific object that is described in the information view (see Chapter 3).
As a result, the effect that different system functions have on that object is shown in an over-
view within one state machine. Compared to the purely functional view, for example, in the
process-oriented view, a redundancy is introduced which serves one of the following pur-
poses:

 The consistency in the specification of the functions is validated.

 A focused view of an object increases the comprehensibility and traceability.

It is important when dealing with state machines that the topic under consideration (the
matter at hand) for which the states are modeled is determined consciously. It may be one of
the following:

 The system under development

 Subsystems of the system

 The objects of a class from the information view

4.4.2 The Term "State"

The term "state"—as generally used in requirements engineering—is derived from the theo-
ry of automata: a state is a summary of certain conditions that apply for an object of observa-
tion over a period of time. But where do the conditions for an object come from?

If the item in question is an object (an instance of a class), then the possible states are de-
scribed by combinations of possible values of its attributes. Figure 52 shows an example of a
car with six possible values for the color and two possible values for the attribute "Ready to
drive". As a result of these potential conditions, a total of 12 potential states for the car are
available.

62 Dynamic Views

Figure 52: Definition of a car (a)

Extending the example to another attribute that specifies the mileage, we encounter a prob-
lem if this attribute can have an infinite number of possible values (see Figure 53). The
number of potential states is therefore unlimited, and this can no longer be represented
graphically in the form of a finite state machine.

Figure 53: Definition of a car (b)

Methods for reducing the number of states to a manageable level are described in Section
4.4.4.

The theory of finite automata (Moore or Mealy automata) is not used widely in requirements
engineering. Statecharts, introduced in 1987 by Harel [Hare1987], or the extension of Harel
Statecharts in the OMG UML [OMG2010b, OMG2010c] and the OMG SysML [OMG2010a] are
used instead. The Harel Statecharts differ from the original finite state machine mainly re-
garding the following three points, which greatly simplify the modeling of the state-oriented
view of requirements engineering:

 More extensive ways of linking functions to states and state transitions

 Introduction of conditions (guards) which, for example, have to be met before the
transition

 Introduction of the possibility of hierarchical state machines and orthogonal regions

The second point in particular has huge implications for modeling the state-oriented view, as
it is no longer necessary to model the entire history in the form of conditions. This reduces
the number of observed states and the complexity of the charts created.

State machines have one property in common: the object of the state machine is always in a
defined state at the moment of observation. This implies that the transition between two
states has no temporal aspect (consumes no time). In a real life implementation, however,
for example in software, these transitions do consume time. Therefore, the phrase at the be-
ginning of this paragraph must be expressed a little more softly: an object can respond to
events from the outside only if it is in a defined state. With respect to the implementation,
this means that the incoming events must be buffered for the short duration of the transi-
tion. This ensures the required semantics of a state machine.

4.4 State-Oriented Modeling of Requirements 63

4.4.3 A Simple Example

The diagram in Figure 54 contains a simplified state machine for a windshield wiper system
in vehicles. In this example, the main model elements for modeling a state-oriented view are
presented. They are presented in more detail in the following sections along with the nota-
tion elements of UML.

Figure 54: State diagram for a wiper system

4.4.4 Model Elements of State Machine Diagrams

In this section, we present the most commonly used model elements for modeling a state-
oriented view. We use the notation of UML. For more notation symbols and explanations, see
[OMG2010b, OMG2010c], and [BoRJ2005].

64 Dynamic Views

Notation Name

Simple state

Transition

Initial state

Final state

Composite state

Sub-machine state

Orthogonal regions

Figure 55: Modeling constructs of state machines (detail)

4.4 State-Oriented Modeling of Requirements 65

4.4.4.1 Simple State

4.4.4.1.1 Syntax and Semantics

In UML, a simple state is represented with the notation element shown in the following fig-
ure:

Figure 56: Notation of a state

A state should always have a name. In addition, in this state you can specify which functions
are called. In UML, the types of function calls listed below are defined in a state and the italic
identifiers are defined with keywords with specific semantics. The identifier "function" re-
fers to the function that is executed.

 Entry behavior: entry/function: When a state is entered, the function is executed. This
function cannot be interrupted.

 Exit behavior: exit/function: When a state is exited, the function is executed. This func-
tion cannot be interrupted.

 State function: do/function: While the object of observation is in the state, the function
is executed. This can be interrupted by a trigger which leads to a state change.

 Triggered function: trigger [guard]/function: When the trigger occurs and if the guard
is true, the function is performed without the object exiting the state.

 Delay: trigger [guard]/defer: If an event in the deferred event list of the current state
occurs, the event is deferred for future processing until a state is entered that does not
list the event in its deferred event list (see Section 4.4.4.2)

For the states, the following rules apply:

 A state is entered when a transition is passed through that leads to this state as the end
point (see Section 4.4.4.2).

 A state is exited when a transition is passed through that leads away from the state.

 A state becomes active as soon as it is entered. When a state is exited, it becomes inac-
tive.

 As soon as a state is entered, the entry behavior (here: function 1) is executed. When a
state is exited, the last thing to happen is the execution of the exit behavior (here: func-
tion 2).

 The state behavior of a state ("do" behavior) is the function (here: function 3) that is
started directly after ending the entry behavior (here: function 1).

 A state can be exited through a transition only after the entry behavior (here: function
1) has been fully executed.

 The initiation of function 4 by a trigger under an optional guard condition does not
lead to an external state change even if the behavior of a function (here: function 5) is
part of the list of deferred behaviors of the state.

66 Dynamic Views

4.4.4.1.2 Finding States

If the theoretical viewpoint from Section 4.4.2 is followed literally, in general, an object can
have many, sometimes even an infinite number of states. In order to reduce this number of
states to a reasonable level, two procedures are recommended:

 Omit attributes that are irrelevant for the state observation

 Form equivalence classes of possible attribute values

Looking at the example from the introduction, for the task in question we can consider
whether for the object car, the attribute color is relevant. If not, it does not have to be includ-
ed in the consideration of the state.

Figure 57: Definition of a car (c)

Equivalence classes are introduced to decide whether the possible values of the attributes
can be divided into certain areas. The object under investigation will behave in the same way
regardless of exactly which value is selected from a range of values of an attribute. There-
fore, it may seem appropriate to divide the mileage of a car into three areas: "low", "medi-
um", and "high". This reduces the number of theoretical states to a finite number.

Figure 58: Definition of a car (d)

The number of the resulting states can be reduced further by grouping states into technically
useful groups.

When considering systems, states are identified by the following rule: system states differ
from each other by the fact that the system under development shows different behavior to
the outside depending on which state it is in. These differences are reflected mostly in the
fact that an actor will be able to use different features of the system based on the state it is
in.

4.4.4.2 Transitions

4.4.4.2.1 Syntax and Semantics

In UML, a transition is represented by an arrow with an appropriate name. It connects an in-
itial state to a target state.

Figure 59: Notation of a transition

Trigger [Guard]/Function

4.4 State-Oriented Modeling of Requirements 67

The naming of the edge consists of the following optional elements:

 Trigger: the trigger for the transition. The individual triggers are separated by com-
mas.

 Guard: a condition that must be true before the transition is executed upon receipt of
the trigger. The guard condition is listed in square brackets.

 Function: the function that is executed when passing through the transition.

Here, note that by definition, going through the transition must not consume any time.
Therefore, only "short" functions should be referenced (such as the starting or stopping of
an engine).

Normally, the output state is exited by going through a transition and then another state is
reached as the target state. However, it may be the case that the source and target state are
the same. This particular type of transition is referred to as a self-transition.

The transitions are triggered by a trigger and executed if the corresponding guard has a val-
ue "true". Of course, this only applies if a guard is specified in the transition.

UML acknowledges numerous types of triggers. In requirements modeling, it is mainly the
following two types of trigger that occur:

 Signal trigger: A signal trigger is an incoming signal to the active state which triggers
the execution of a transition. Therefore, the terms "trigger" and "signal" are very often
used interchangeably.

 Time trigger: With a time trigger, you can trigger a transition at a certain time or after a
certain period of time. OMG UML/SysML use the keyword AFTER, which is listed in-
stead of the name of the transition.

In addition to being triggered by a trigger, a transition can be traversed without the trigger.
This is the case as soon as the guard is "true" if you have listed only a guard and no trigger
on the transition.

A guard can check the validity of certain values, such as "x = 5" or ranges of values "x> = 10",
as well as statements such as "x is located on the desktop" ("x" in this case can represent a
parameter that results from an operation or a signal. It can also be a system variable). It is
crucial that the guard represents a Boolean condition. The truth of this condition can be
evaluated at any time, that is, the condition has either "true" or "false" as a value at any time.

The receipt of a signal and the consequent triggering of a transition are executed only when
the object of observation is in a state which includes the signal as a trigger and the transition
leads away from it. If no such transition is defined for the current state, then the signal is
discarded. In the current state, this signal is defined as "to be delayed" (defer). The signal is
reset and once the next signal arrives, it will be used again.

Transitions provide a transition from a source to a target state. If two transitions have the
same initial state, they should be distinguished by different triggers or with the same trigger
but different guards. This is not a prerequisite but it makes the execution of the resulting
state machine deterministic.

4.4.4.2.2 Finding Transitions

There are two different approaches for finding the transitions:

 Identification of transitions from outgoing states

68 Dynamic Views

 Identification of transitions from incoming signals

The first approach is very intuitive because you have already given some thought to the
identification of the states, why two states are to be differentiated, and when to switch from
one state to another. An example of this approach is when you examine the use cases you
have assigned to the states as functions. Is the postcondition formulated defined as a state? If
so, the transition should lead to that state because the system should take on exactly this
state (see also Section 4.2).

The second approach is more methodical. This is about whether and how the use case re-
sponds to an external signal when the system is in a particular state. This is repeated for all
incoming signals and potentially for all states. This approach is more likely to be used in the
consideration of a more technical system, in which perhaps the interfaces are specified with
the external interfacing systems.

The second approach for finding transitions is also closely related to the modeling in the
scenario view (see Chapter 5). A message that is received from the object under investiga-
tion will generally result in one or more state transitions during the processing of the mes-
sage. Therefore, modeling of the scenario view is also used to locate and verify the state
transitions in a state machine.

4.4.4.3 Initial State

4.4.4.3.1 Syntax and Semantics

Figure 60: Notation of an initial state

Whenever a state machine is started, the first transition is the transition that leads from an
initial state to a state. Because a system must always be in a certain defined state, the initial
state is also referred to as a "pseudo" state. The system is never in such a state at any point
in time. This means that no guard and no trigger may be listed on the output edge of an ini-
tial state.

In addition to an initial state in a state machine, initial states can also exist in the composite
states. Section 4.4.4.5 looks at this subject matter in more detail.

4.4.4.3.2 Finding Initial States

Each state machine should have exactly one initial state and finding it is not difficult. You
simply draw the first state that the system is to take after the start.

4.4.4.4 Final State

4.4.4.4.1 Syntax and Semantics

Figure 61: Notation of a final state

If the final state is reached, the execution of the overall state machine is terminated. After
reaching the final state, no additional activities are executed. Therefore, there can be no out-
going pointer from final states. Technically, the final state can be seen as the end of the life
cycle for the modeled object under investigation.

4.4 State-Oriented Modeling of Requirements 69

4.4.4.4.2 Finding Final States

At this point, we have to consider and analyze in detail the specific features of the object un-
der investigation. Which of the life cycles is relevant for meeting your requirements? For ex-
ample, if software is considered solely while it is being run, then exiting the software equates
to the final state. However, if we are considering an embedded system over the entire period
in which it is "built" into its environment, no final state is needed because the system may
never terminate (see also the example in Section 4.4.3).

In addition, final states also exist in the composite states, which are presented in the next
section.

4.4.4.5 Composite State

Composite states are composed of one or more states.

4.4.4.5.1 Syntax and Semantics

Figure 62: Notation of a composite state

The states included in a composite state are referred to below as substates. All types of
states are possible as substates of a composite state. This means that in addition to the sim-
ple states and pseudo-states, you can also use a composite state. This allows you to define a
hierarchy of states. The leaves in the resulting state tree are the simple states; the inner
nodes are composite states.

Figure 63: Hierarchical states

The root of the state tree is an exception because in a fully defined model, it always repre-
sents a state machine. It describes the behavioral description of the object under observa-
tion as it is seen from the outside.

State Machine

Composite State

Simple State

70 Dynamic Views

As described in Section 4.4.2 above, one state must be active in a state machine. This rule
must be met at all times. If the state is a composite state, one of its substates is active. Since
this substate may in turn be a composite state, the definition of the active states continues
downwards in the hierarchy until a simple state can be referred to as the active one.

4.4.4.5.2 Entering Composite States

The possibilities for entering a composite state are described in the following figure.

Figure 64: Entry into composite states

Semantics when entering composite states:

 Default entry (trigger T1): If state A is entered starting from state B, the start node is
passed through and the active state is A.1.

 Explicit entry (trigger T2): If state A is entered starting from state C, the starting node is
not passed through and the state A.2 is entered directly.

Modeling provides the history construct as another possibility for entering composite states.

Figure 65: Shallow history

If the state "Operating modes car radio" is entered, the state which was active the last time
this state was exited becomes active again. It is only in the special case of the first-time entry
(i.e., no is history available) that the "Radio mode" is active. In the picture, the "Shallow his-
tory" is represented by H.

If there is a deeper hierarchy of composite states, the "Deep history" may be used. This not
only remembers the substate of the upper level but also ensures that all nested substates
(down to the leaf level) are remembered. This deep history is represented by H*.

4.4 State-Oriented Modeling of Requirements 71

Figure 66: Deep history

4.4.4.5.3 Exiting Composite States

There are also different ways to exit composite substates.

Figure 67: Exiting composite states

Exiting a composite state:

 Reaching the final state (trigger T2): There must be a transition from state A without a
trigger which is executed. The next active state is F.

 Transition of a substate (trigger T4): This corresponds to the logical semantics: if A.1 is
active and signal T4 is received, state E becomes active.

 Transition of the composite state (trigger T3): Regardless of which substate is active
(A.1 or A.2), as soon as the trigger T3 occurs, state A is exited. The strength of this
modeling construct is demonstrated here. A state hierarchy emphasizes abstraction as
a technique for coping with complexity because the behavior on the upper level is de-
fined completely independently of the situation within A.

4.4.4.5.4 Finding Composite States

Using composite states becomes easy with the following rule: if the system should exhibit
similar behavior (exiting the state, calling functions) in several different states, these states
may be combined into a composite state. However, it is not permissible for one state to be-
long to several different composite states. In this case, you have to determine (based on ap-
plication logic) how to resolve this conflict.

72 Dynamic Views

In general, however, composite states arise relatively naturally when we look at the modes
of the application. For example, a fan has two states at the upper level: "on" and "off". The
"on" state can then be subdivided further based on the chosen speed (slow, fast).

Figure 68: States of a fan

4.4.4.6 Substate Machine

4.4.4.6.1 Syntax and Semantics

A substate machine is represented as a simple state. However, there are two possible exten-
sions to a simple state. The name of the substate machine and the name of the state it is as-
sociated with are separated by a colon. The other option is to put a shape that resembles a
pair of glasses at the bottom right.

Figure 69: Syntax of a substate machine

With the introduction of the substate machine, the idea of hierarchical Statecharts, as intro-
duced by composite states, is continued. The lower-level states of a composite state are
shown graphically as a separate state machine (in a separate diagram). At a higher level, the
state machine is referenced via this substate machine.

In order to also use the transition mechanism described in Section 4.4.4.2 in substate ma-
chines, entry and exit points are introduced. With these model elements, both an explicit en-
try and a transition can be modeled in a substate. This continues the concept of abstraction
as described in Section 4.4.4.2.

4.4 State-Oriented Modeling of Requirements 73

Figure 70 shows the transformation from a composite state into a substate machine.

Figure 70: Use of entry and exit points

The left-hand part models a composite state; the right-hand part shows the use of a substate
machine. Note where the triggers T4 and T2 are listed in the solution on the right. An exam-
ple of the distribution of guards is given in the example section below.

4.4.4.6.2 Finding Substate Machines

For the identification of substate machines, the same heuristic can be applied as is used in
identification of composite states (described in Section 4.4.4.2). In addition, note that multi-
ple abstract state machines can be used in one substate machine. The diagrams can be made
clearer using this concept.

As an example of this type of reduction of the complexity, the state machine of a fan is shown
with an abstract state machine and a refinement of the state "On".

Figure 71: State machine of a fan

74 Dynamic Views

Figure 72: Hierarchical states of a fan

4.4.4.7 Orthogonal Regions

Using orthogonal regions, it is possible to define two or more parts of a state machine that
can respond independently to events.

4.4.4.7.1 Syntax and Semantics

Figure 73: Syntax of orthogonal regions

A state can be divided into several orthogonal regions. Each region can have its own state
machine, similar to the composite states model. This allows the opportunity to reduce the
number of states if states can be distributed over several independent sets.

By way of explanation, let us look at the following example of an infotainment system which
offers both a radio and a navigation system (see Figure 74). After turning the infotainment
system on, the radio and the navigation can be switched to standby independently. Further-
more, the navigation can be set to destination entry or to the route guidance. Regardless of
the navigation, the radio can be in radio mode or in CD changer mode. These six possible
states for the two parts would result in a total of nine substates (3 times 3, this will become
clearer later on), presuming the system is in the active mode (after activation). Since each of
the three states are independent of each other, the state active can be split into two orthogo-
nal regions. The following state machine shows the result of this.

4.4 State-Oriented Modeling of Requirements 75

Figure 74: Orthogonal regions of an infotainment system

For the independence of the states, the following rules must apply:

 The behavior in a region is independent of the current state in the other region.

 Transitions across the boundaries of the regions are not allowed.

Note that even with the use of orthogonal regions, the paradigm mentioned in Section 4.4.2
is not violated. The system is still in exactly one state at any time but the state results from
the combination of the active states in the individual regions.

The example given above uses one possibility for exiting the active state just as in the com-
posite states. For entering the active state, the modeling construct of parallelization is used
to express which two substates the system should adopt at the same time. In addition to
these options, there is a variety of other entry and exit options. For a complete overview, see
[BoRJ2005].

The following figure shows the state machine of Figure 74. We can clearly see that from the
six states modeled, nine states are now being derived. The number of transitions increases
even further.

76 Dynamic Views

Figure 75: Resolved orthogonal regions

4.4.4.7.2 Finding Orthogonal Regions

Finding regions and recognizing that orthogonal regions can be formed is not always easy. It
is good practice to start modeling without orthogonal regions. When the state machine be-
comes too complex, check whether perhaps the names of the states indicate certain orthog-
onal regions. In many cases, an indication for those regions is that parts of a state (refine-
ment) are discussed in several independent parts of the state machine.

4.4.5 Typical State Machines/Modeling Scenarios

4.4.5.1 Generic State Machines for Technical Systems

The following figure shows a generic solution which can serve as a template for state ma-
chines of technical systems.

Figure 76: Generic state Machine of a technical system

4.4 State-Oriented Modeling of Requirements 77

In this machine, the two states "Diagnosis Mode" and "Operational Mode" should be further
refined. However, these refinements are highly dependent on the system under develop-
ment, so no further statements about the form of these states can be taken at this point.

Even more states can be integrated in this state machine if required. In infotainment systems
in the automotive industry, for instance, a "Driving Mode" can be defined in which the sys-
tem does not accept inputs. This state would be parallel to the "Diagnosis Mode" and "Opera-
tional Mode".

4.4.5.2 States of Objects of a Business-Oriented System

As a typical example of the states of an object in a business-oriented system, we will use the
object request for leave. Figure 77 shows the state machine of this object, whereby the full
definition of triggers, guards, and functions is omitted:

Figure 77: States of a request for leave

As we can see in the machine, the states of the object correspond to time periods in which
the request for leave is stable (for some time). This also corresponds to the possible stages
of processing by use cases because a use case contains a complete interaction between an
actor and the system. As a result, the states of the request for leave must be stable after a use
case is completed. From a technical perspective, this means that this information must be
stored in the database so that the logical implementation knows which steps are allowed for
a specific request for leave.

The close relationship between the states and the use cases for processing such a request for
leave can be expressed in another way: the states of the object specify the postconditions
that have been defined in a use case.

78 Dynamic Views

4.5 Further Reading

Data flow perspective

 DeMarco, Tom: Structured Analysis and System Specification, Yourdon Press, Prentice
Hall, 1979

Control flow perspective—in particular, activity diagrams

 Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference Manual,
Addison Wesley, 2004

 Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide. Addison-
Wesley 2005.

Use case modeling and specification

 Jacobson, I.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software Engi-
neering – A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

 Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference Manual,
Addison Wesley, 2004.

 Cockburn, Alistair: Writing Effective Use Cases, Addision Wesley, 2000.

State perspective

 Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference Manual,
Addison Wesley, 2004

79

5 Scenario Modeling

Today, scenarios are an essential tool in requirements engineering, for example, to specify
the system vision and goals of stakeholders or to describe the added value created for the
users of the system. Scenarios have the character of examples which look at the use of the
system under development by humans or other systems (see, e.g., [Caro1995]). Besides their
use for the exemplary description of the use of the system under development, scenarios can
also be used to specify functional requirements precisely. In this case, in the associated sce-
nario view, all the scenarios that occur in the system usage are specified at a high level of
precision—for example, through UML sequence diagrams or Message Sequence Charts ac-
cording to the ITU standard [ITU2004].

5.1 Purpose

Since the early 1990s, scenarios have been used in requirements engineering to support the
systematic specification of requirements (see, e.g., [Pott1995]). If the starting point for re-
quirements engineering is the raw system vision or the goals of the stakeholders, in many
cases it is difficult to immediately specify the requirements of the system completely and
correctly based on that vision or those goals (see, e.g., [DaLF1993]). This key insight led to
the use of scenarios in requirements engineering. Scenarios focus on the interaction-based
view which is a specific behavioral view of the functional requirements of the system. In this
view, the behavior of the system is described by sequences of interactions between commu-
nication partners. In the center of the interaction-based view are the communication part-
ners that represent either systems or individuals in the system context or the system under
development, and the interactions between these communication partners. An interaction
between communication partners is a sequence of messages exchanged between these part-
ners. These messages can be information or data that is exchanged via communication chan-
nels between the communicating actors. Moreover, requirements engineering also considers
messages in the form of tangible flows between communication partners in interactions, for
example, a material flow or cash flow between communication partners.

A scenario is an interaction between communication partners (often between the system
under development and actors in the system context) that leads to a desired (or possibly
undesired) result. Scenario modeling is often used to specify the system vision and goals of
stakeholders with regard to the desired use of the system. Scenario modeling is not normally
limited to only the interface of the system under development in the form of the direct mes-
sage exchange between actors and the system but also considers messages that are ex-
changed between actors in the system context. Thus, scenario modeling is not only the mod-
eling of the requirements of the system under development, but also the interaction context
of messages which are exchanged between actors and the system under development.

In requirements engineering, the added value to an actor in the system context is often seen
as an essential result of a scenario. The following example illustrates a simple scenario de-
scribed in natural language which documents an interaction between a person (John) and an
online store so that John can make a purchase.

80 Scenario Modeling

Example: Scenario "Shopping in an online shop"

In the product catalog of the online shop, John chooses the desired products and then confirms
that he would like to finalize the purchase. The online shop shows John the selected products in-
cluding the quantity and price and the total of the purchase. The online shop asks John to con-
firm the purchase. After John has confirmed the purchase, the online shop asks for the shipping
address. John enters the desired shipping address and confirms it. After confirmation of the
shipping address, the online shop asks John for the payment information. John enters the pay-
ment details and confirms them. The online shop then displays the complete order including
shipping address and payment details and asks John to confirm this order. John confirms the or-
der, whereupon the online shop displays an order confirmation.

The associated added value that the actor (John) gets through the use of the online shop is
that John can order the desired products via the Internet.

5.2 Relationship between Scenarios and Use Cases

There are various types of scenarios in requirements engineering. An extensive analysis of
the different types of scenarios can be found in [RAC1998]. The following paragraph pre-
sents two frequently found differentiations of scenarios and the related types.

One common differentiation of scenarios distinguishes between main scenarios, alternative
scenarios, and exception scenarios. This distinction is a key element of use case-based ap-
proaches (such as [JCJO1992]), in which scenarios that relate to a specific added value are
grouped within a use case and are documented complementary to each other (see Section
4.2.5). The use of main, alternative, and exception scenarios is not necessarily limited to use
case-based approaches. A main scenario is a scenario that describes a predominantly oc-
curring sequence of interactions to achieve a specific result (e.g., a specific added value). An
alternative scenario is a scenario that describes an alternative sequence of interactions to
achieve the specific result in relation to a main scenario. An exception scenario is a scenar-
io that describes a sequence of interactions that must be executed if a defined exception
event occurs. In requirements engineering, exception scenarios are specified to handle ex-
ceptional situations in operations in a controlled manner, often in addition to main and al-
ternative scenarios.

In practice, the number of exception scenarios is in most cases considerably larger than the
number of alternative scenarios of a main scenario. This is because the exception scenarios
(and associated exception events) should preferably cover all situations that can occur dur-
ing the execution of the main or alternative scenarios and that prevent a further successful
execution of the corresponding scenarios (or the associated use case, see Section 4.2) in the
operation of the system. Each exception scenario specifies a controlled exception handling in
response to a defined exception event.

5.3 Approaches to Scenario Modeling

The modeling of scenarios allows the documentation of extensive and complex situations
which involve the interaction-based behavior of the system in an easily understandable and
structured way. Diagram types that allow the documentation of an arrangement of interac-
tions between communication partners in visual form are particularly suitable for modeling
scenarios. Today, sequence diagrams are often used for modeling scenarios. In sequence di-
agrams, the communication partners involved in the interaction sequence are arranged in

5.4 Simple Examples of a Modeled Scenario 81

the horizontal dimension. The interactions between the communication partners are mod-
eled in the order of appearance in the vertical dimension. In this way, scenarios from use
cases can also be specified in more detail through diagrams (see Section 4.2).

In the telecommunications industry, Message Sequence Charts (MSCs) of the International
Telecommunication Union (ITU) according to the standard ITU-T Z.120 [ITU2004] are used.
The high degree of formalization of MSCs offers far-reaching possibilities for automatic pro-
cessing such as quality inspection (e.g., to check freedom from contradictions and complete-
ness) or generative approaches for development. The use of h (high-level) MSCS (similar to
the interaction overview diagrams in UML 2) allows appropriate structuring of extensive
and complex models in the scenario view. The ITU-T Z.120 standard came into force in 1992
and has been subject to continuous improvement ever since. In particular, it has heavily in-
fluenced the sequence diagrams of UML [OMG2010c, OMG2010b] and the sequence dia-
grams of SysML [OMG2010a]. The use of UML/SysML sequence diagrams has the advantage
that UML and SysML are much more widespread in practice than competing modeling ap-
proaches, such as those of the ITU. Moreover, through the metamodel of UML/SysML, sce-
narios modeled in UML/SysML sequence diagrams can be integrated with other views of re-
quirements modeling if UML or SysML diagram types are also used in these views.

Besides UML and SysML sequence diagrams, UML provides another diagram type, commu-
nication diagrams, which also allows scenario modeling. Compared to sequence diagrams,
which focus primarily on the sequence of interactions between communication partners,
UML communication diagrams focus on the visualization of the bilateral interactions be-
tween communication partners. The sequence of interactions is then indicated by sequence
numbers added to the interactions.

5.4 Simple Examples of a Modeled Scenario

Figure 78 shows the modeling of a simple scenario in the form of a UML sequence diagram
(a) and a UML communication diagram (b).

sd Record navigation data cm Record navigation data

:Driver :MapServer

Navigation request

Request destination

Route selection

Request routes

Destination

Selected route

Possible routes

Query route data

Route data

Display route data

Start navigation

Navigation started

:Driver

<<SuD>>

:Nav.

:MapServer

1:Navigation request

2:Request destination

3:Destination

4:Request routes

5:Possible routes

6:Route selection

7:Selected route

8:Query route data

12:Navigation started

9:Route data

10:Display route data

11:Start navigation

<<SuD>>

:Nav.

Figure 78: Modeling of a scenario with (a) sequence diagram and (b) communication diagram

82 Scenario Modeling

Both diagrams model the scenario "Record navigation data". The name of the scenario is
specified in the upper part of the frame. The keywords "sd" and "cm" respectively designate
the diagram type used to model the corresponding scenario. In Figure 78, "sd" stands for se-
quence diagram and "cm" for communication diagram.

The sequence diagram on the left of Figure 78 shows a sequence of interactions between in-
stances of the communication partners ":Driver", ":Nav" and ":MapServer" that must be exe-
cuted so that the driver can enter the navigation data in the navigation device. The system
under development is labeled with the stereotype <<SuD>> (system under development) to
make the separation between the system and the actors in the system context clear. As
shown, in sequence diagrams the sequence of interactions is modeled in the vertical dimen-
sion. In the horizontal dimension, the instances of the communication partners involved in
the given scenario are listed. The ":" in front of the name of the communication partner indi-
cates that it is a concrete instance. The arrowhead indicates the direction of the message ex-
change.

The communication diagram on the right of Figure 78 also represents the scenario "Record
navigation data". In this diagram, however, the sequence of the interactions is not docu-
mented in the vertical dimension but is instead annotated by specifying sequence numbers
for the interactions. With a line between communication partners, the communication dia-
gram visualizes the existence of a direct communication relationship. The interactions oc-
curring due to this communication relationship are documented by messages. Each of these
messages is specified by a name, the associated sequence number of the message in the sce-
nario, and the direction of the message flow.

In the visualization, communication diagrams place special emphasis on the communication
relationship between two communication partners. In contrast, the temporal or logical se-
quence of interactions of scenarios is better visualized by sequence diagrams. Due to the dif-
ferent priorities of the visualization, the requirements engineer must decide, depending on
the situation, which one of the two diagram types is most appropriate for the respective use
(↑ pragmatic quality).

If different uses are required, a scenario can be modeled in both diagram types. The se-
quence diagram or the communication diagram could also be constructed automatically
from the diagram of the other diagram type. However, what is significant is that complex in-
teractions (e.g., the conditional repetition of messages or alternative messages) cannot be
represented by communication diagrams or only with a great deal of difficulty.

In the next section, the different model elements for scenario modeling with UML/SysML se-
quence diagrams or UML communication diagrams are presented, including an explanation
of their specific relevance for modeling requirements. Further information about the model
elements of sequence diagrams and communication diagrams can be found in [OMG2010b]
or [OMG2010a].

5.5 Scenario Modeling using Sequence Diagrams 83

5.5 Scenario Modeling using Sequence Diagrams

Figure 79 shows the model elements of UML/SysML from OMG for sequence diagrams which
are used for modeling scenarios.

Name

Name of instance:
name of actor

Notation

Lifeline

sd Name
Frame

Basic modeling elements

Asynchronous
message exchange

Synchronous
message exchange

Activation

Termination

Advanced modeling elements

Combined fragments

Alternatives

Notation

alt [condition]

[┐condition]

Explanation Explanation

Sequence diagram frame

Life-line of an instance
of an actor in the scenario

Actor with activation
owns the control flow

Destruction of an instance
of an actor

Sending a message without
the sender waiting for
an answer

Optional

opt [condition]

Reference
ref

Name

Repetition

loop(0,m)

[condition]

Termination
break

[condition]

Modeling alternative interaction,
Depending on conditions

Modeling of an optional interaction,
depending on a condition

Modeling of a reference
to an interaction of another
sequence diagram

Repetition of the interaction,
m times or up to m times,
depending on the condition

Modeling of an interaction that
will be executed on occurrence
of a termination condition

Sending a message and the
sender waits for an answer

- Lost message

- Incoming message

Advanced message types

- Found message

- Outgoing message

Message of which the source/
receiver is unknown

External incoming, or
external outgoing message

ReceiverSender

ReceiverSender

Answer message

Time axis

Moment

Register

Register

Interaction frame

Name

Figure 79: Model elements for scenario modeling using sequence diagrams

The left-hand panel of the figure presents the basic model elements, that is, those model el-
ements that are essential for modeling scenarios with sequence diagrams. The right-hand
panel of the figure shows the model elements that are used to model more extensive and
more complex interaction relationships between communication partners.

5.5.1 Basic Model Elements

5.5.1.1 Modeling the Identifiability and Referenceability of a Scenario

Sequence diagrams have an outer frame (interaction frame) which has the name of the sce-
nario that is modeled by the diagram in a register in the upper left area.

The name of the scenario has the prefix "sd", which, as already explained above, indicates
that the scenario is modeled by a sequence diagram. The use of frames means that the sce-
nario can be identified and referenced by name, which in particular supports the manage-
ment of different diagrams.

5.5.1.2 Modeling the Communication Partners of a Scenario

A lifeline represents one instance of an actor within the scenario. The naming of the lifeline
follows the pattern instance name:type name (e.g., Peter:Driver). When modeling
scenarios, instance names are often omitted. However, instance names should be specified if
it improves the understandability of the modeled scenario. If several instances of a certain
communication partner are needed in one scenario, each instance should be given a differ-
ent instance name. This differentiation makes it clear that two different instances of an actor
of a scenario are involved and that there is a direct message exchange. The activation of a
lifeline indicates that the respective communication partner has the control in the visualized

84 Scenario Modeling

period within the scenario, that is, the communication partner determines the control flow
of the scenario.

A termination in the lifeline of an instance signifies the destruction of the corresponding in-
stance of the actor. Figure 80 shows an example of modeling a lifeline with activation and
termination.

Medcom1:MediaServer

EmpfängerSender

EmpfängerSender

Antwortnachricht

activation

Zeitpunkt

lifeline

termination

Figure 80: Modeling of lifelines and termination

5.5.1.3 Relationship of Actors in Scenarios to Context Models and Use Case Models

The actors in the scenarios are also visible in use case diagrams and the context diagrams of
the system, which means that the modeled scenarios can be integrated with the use case di-
agrams of the use case view (cf. Section 4.2) and the context diagrams (cf. Section 2.2) via
the communication partners in the scenarios. Typically, the context diagrams are created be-
fore the scenario modeling, which means that the actors and interfaces documented in the
context diagram can structure and guide the systematic creation of scenarios. Actors that oc-
cur in the scenario modeling but cannot be found in the corresponding use case and context
diagrams indicate that the context and use case models are incomplete (cf. Section 4.2.3).

5.5.1.4 Modeling the Message Exchange within a Scenario

The message exchange between two instances of communication partners within a scenario
is visualized by an arrow. The direction of the arrow indicates the direction of the message
exchange. There are two types of message exchange. In an asynchronous message ex-
change between instances within the scenario, the transmitter sends the message to the re-
ceiver and does not wait for a corresponding response in the form of a message from the re-
ceiver. In scenario modeling, asynchronous messages are used, for example, when an in-
stance wants to send information to one or more instances within the scenario and does not
expect a response from the receiver. In a synchronous exchange of messages between in-
stances within a scenario, the sender of the synchronous message waits for a response mes-
sage from the receiver. One use of synchronous messages in scenario modeling is when an
instance within the scenario requests information from another instance. An example of this
would be the synchronous message "Request personal identification number (PIN)" sent by
the instance of an ATM to the instance of a user. The ATM then waits for the user to enter the
PIN, that is, to send a response message with the PIN. In scenario modeling in requirements
engineering, the "message exchange" refers not only to data that is transmitted through a
communication infrastructure between communication partners; a "message exchange"
within a scenario may also represent the exchange of tangible or intangible entities—for ex-
ample, the insertion of a credit card (tangible entity) into the ATM by the user. Figure 81
shows an example for the modeling of both asynchronous and synchronous messages.

5.5 Scenario Modeling using Sequence Diagrams 85

Medcom1:MediaServer

EmpfängerSender

EmpfängerSender

Antwortnachricht

Aktivierung

(a)

Lebenslinie

Termination

:Customer

New title

Medcom1:MediaServer :Customer

Request user name

(b)

User name

Figure 81: Modeling a) asynchronous and b) synchronous messages

Through message exchange, the sending communication partner can request a service from
another communication partner. Again, the service call can be asynchronous or synchro-
nous. With an asynchronous invocation of a service, the service is merely triggered by a
message, that is, the calling communication partner does not wait for an answer. With a syn-
chronous call, the transmitter waits for the corresponding response from the receiver once
he has requested the service from another communication partner through a message. A
service call can also include its signature, which means that input parameters (arguments)
and return parameters can be specified. Parameters are typically defined in the infor-
mation structure view, which creates a relationship (integration) between the scenario view
and the information structure view. Figure 81 also shows the use of the optional model ele-
ment to represent the activation of a communication partner. Figure 82 shows an example of
the modeling of a service call with incomplete and complete parameters.

EmpfängerSender

EmpfängerSender

Antwortnachricht

Aktivierung
Termination

:MediaClient :MediaServer

CreateTitlelist(Startdate)

return Titlelist

:MediaClient :MediaServer

CreateTitlelist(…)

return

(a) (b)
Figure 82: Modeling of a service call a) with incomplete and b) complete parameters

5.5.1.5 Relationship of Messages in Scenarios to State-Oriented Modeling, Data Flow-
Oriented Modeling, and Information Structure Modeling

The exchange of messages within a scenario represents the essential integration point to the
diagrams of other views of the requirements of the system under development (cf. Figure
83).

:MediaClient :MediaServer

CreateTitlelist(Startdate)

Return Titlelist

State “Wait for title

request“

State “Title request

received“

A
State “Title list sent“

:MediaClient :MediaServer

CreateTitlelist(Startdate)

Return Titlelist

Function

“create Titlelist“

(b) Functions of :MediaServer(a) States of :MediaServer (c) Information structures

Titlelist

Title request

is result of

*

1

1..n

*

Startdate:

Title

ID:

Name:

Figure 83: Messages in scenarios as an integration point with other requirement views

86 Scenario Modeling

5.5.1.5.1 Relationship of Messages to States in the State-Oriented View

As shown in Figure 83 (a), both receiving and sending a message corresponds to a change in
the state of the actor. In Figure 83 (a), for example, receiving the message "Cre-
ateTitlelist(Startdate)" corresponds with the state change of the communication partner
":MediaServer" from the state "Wait for title request" to the state "Title request received".
Sending the message "return Titlelist" also results in a state change for ":MediaSever" (into
the state "Title list sent"). At the same time, receiving this message results in a state change
of ":MediaClient". The states of the various communication partners of a scenario and the
state transitions can be modeled through diagrams of the state-oriented view, for example,
through a UML state diagram (see also Section 4.4).

5.5.1.5.2 Relationship of Messages to Functions/Activities in the Data Flow-Oriented or Control
Flow-Oriented View

As shown in Figure 83 (b), there is a functional relationship between receiving a message
and subsequently sending a message based on the system under development. The reason
for this relationship is that the system has to execute a function based on the incoming mes-
sage and, where applicable, based on locally available information in order to create the re-
sult message. These functions (processes, activities) are typically modeled in the data flow-
oriented or control flow-oriented view: the data dependencies and control flow dependen-
cies between these system functions are modeled, for example, in one or more data flow dia-
grams and activity diagrams (see also Section 4.3).

5.5.1.5.3 Relationship of Messages to Classes, Attributes, and Associations in the Information
Structure View

As shown in Figure 83 (c), the messages and any corresponding parameters are defined in
the information structure view of the requirements. The corresponding information is speci-
fied, for example, in a class diagram which defines the information structure of the messages
in detail, including the technical relationships to other messages that are exchanged between
the system under development and the actors in the system context (see also Section 3).

5.5.2 Advanced Model Elements

The use of combined fragments allows us to model large and complex interaction-based be-
havior in scenarios in an easily understandable way through sequence diagrams. UML or
SysML distinguish between a number of different types of combined fragments. Below, five
types of combined fragments are presented which are very suitable for modeling large and
complex interaction-based behavior in scenarios. Combined fragments are modeled through
interaction frames within a sequence diagram. The type of the combined fragment and thus
the corresponding meaning of the interaction within the combined fragment in relation to
the surrounding scenario are specified via a keyword in the register of the combined frag-
ment. In the vertical dimension of the sequence diagram (timing), the interaction frame is
typically extended as far as the specific interaction takes place over time. In the horizontal
dimension, the interaction frames of the combined fragments are extended as far as to in-
clude all instances that exchange messages within the specific interaction in the combined
fragment.

5.5.2.1 Modeling Alternative Interactions of a Scenario ("alt")

Alternative fragments are used to model alternative interaction sequences (i.e., an alterna-
tive behavior) of a scenario. Within the sequence diagram, a corresponding interaction
frame is modeled with the keyword "alt" in its register. The interaction frame is divided into

5.5 Scenario Modeling using Sequence Diagrams 87

two or more sections. For each of these sections, an explicit Boolean condition must be
specified that determines when ("when" in the sense of a logical condition) the interaction in
the corresponding section is executed. For one section, the condition "else" can be given,
thereby specifying that the corresponding interaction is executed if none of the other condi-
tions at the time of the potential entry into the combined fragment are true. If this section is
omitted, no interaction is executed if none of the conditions are true when the combined
fragment is entered. The Boolean condition of each section is typically modeled over the life-
line of the instance within the scenario that has access to the value used to evaluate the
Boolean condition. The Boolean condition can be arbitrarily arranged over the lifelines if the
values are global values. In formulating the conditions for individual sections of the alterna-
tive interaction of the scenario, it is important to make sure that they do not overlap from a
logical point of view, that is, no more than one condition is true when the combined frag-
ment is entered. If this is not the case, the associated scenario would have non-deterministic
behavior (cf. Section 4.4). Figure 84 shows an example for the modeling of a combined frag-
ment of the type "alternative".

:Dispatcher

workstation

:On-Board-

System 1
:Dispatcher

:On-Board-

System 2

transportation damage message

damage info

damage info

transportation damage message

[electronic message]

[manual message]

alt

<<SuD>>

Figure 84: Modeling of a combined fragment of the type "alternative"

5.5.2.2 Modeling Optional Interactions of a Scenario ("opt")

Optional fragments are used to model optional interactions (i.e., optional behavior) of sce-
narios. Within the sequence diagram, a corresponding interaction frame is modeled with the
keyword "opt" in its register. In the interaction frame, an explicit Boolean condition should
be specified that defines which condition must be true during the execution of the scenario
at the time of the potential entry into the combined fragment. The interaction modeled in the
optional fragment is then executed. The Boolean condition is typically modeled over the life-
line of the instance within the scenario which determines whether the corresponding condi-
tion is satisfied or not. If the condition is not true at the time of the potential entry into the
combined fragment, the corresponding interaction (or the associated exchange of messages)
does not take place during the execution of the scenario. An optional combined fragment
may be regarded as an alternative combined fragment that has only one section with a cor-
responding condition. Figure 85 shows an example of the modeling of a combined fragment
of the type "optional".

:Dispatcher

workstation

:Customer

Replacement transport data

Confirmation replacement transport data

<<SuD>>

opt [Premium customer]

Figure 85: Modeling of a combined fragment of the type "optional"

88 Scenario Modeling

5.5.2.3 Modeling Abstractions of Interaction Sequences of a Scenario ("ref")

Sequence diagrams provide the ability to abstract from combined interaction sequences of a
scenario by referring, at the appropriate position in the sequence diagram, to another se-
quence diagram which models the corresponding interaction of the scenario. For this pur-
pose, a combined fragment is modeled in the sequence diagram at the position at which the
abstracted interaction occurs. The combined fragment is then characterized in its register
with the keyword "ref". The name of a scenario is specified in the center of the fragment.
This is the scenario which contains the detailed interaction which, during the execution of
the parent scenario, is integrated into the interaction of the scenario at the position indicat-
ed by the combined fragment. The use of combined fragments of this type is particularly ap-
propriate when large or complex interaction behavior of a scenario has to be modeled. This
allows the requirements engineer to extract technically connected interactions of a complex
scenario into a separate sequence diagram. The use of combined fragments of the type "ref-
erence" is also appropriate if certain interactions (such as the interactions to authenticate a
user on the system) occur in an identical manner in several scenarios.

When modeling interaction sequences in separate sequence diagrams which are referred to
in other sequence diagrams by a combined fragment of the type "reference", the require-
ments engineer must ensure that the partial scenario that will be included is compatible
with the parent scenario. For example, no instances that do not occur in the parent scenario
or in the corresponding sequence diagram may occur in the partial scenario. Figure 86
shows an example of the modeling of a combined fragment of the type "reference".

:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance
:Customer

:Fleet

management
:Dispatcher

:On-Board-

System 2

Provide replacement vehicle

<<SuD>>

ref

Figure 86: Modeling of a combined fragment of the type "reference"

5.5.2.4 Modeling Repetitions of Interactions within a Scenario ("loop")

To express repetitions of interactions within a scenario, a corresponding interaction frame is
modeled within the sequence diagram with the keyword "loop" in its register. In combined
fragments of this type, the number of repetitions is specified either by loop ([number])
or by loop ([min, max]) with a lower (min) and an upper (max) limit on the number of
repetitions. In the latter case, the limits for the repetition specify that the interaction is re-
peated within the interaction frame at least min and at most max times. In this case, the rep-
etition of the interaction within the interaction frame is also specified by a Boolean condi-
tion. If the interaction within the interaction frame of the scenario is repeated min times,
the repetition is discontinued if the evaluation of the Boolean condition is false when re-
entering the interaction frame of the combined fragment. If the Boolean condition is true for
each entry into the interaction frame, the repetition of the interaction is completed after max
runs. Figure 87 shows an example of the modeling of a combined fragment of the type
"loop".

5.5 Scenario Modeling using Sequence Diagrams 89

:Dispatcher

workstation

:On-Board-

System 1

:On-Board-

System 2

Transportation documents

Acceptance

Loop(0,3) [Acceptance not successful]

<<SuD>>

Figure 87: Modeling of a combined fragment of the type "loop"

5.5.2.5 Modeling the Termination of a Scenario ("break")

During the course of a scenario, situations may arise that prevent the successful execution of
the scenario. To represent the necessary exception handling from a technical point of view in
such cases, the interaction for the exception handling can also be modeled in sequence dia-
grams. The termination fragment contains an optional Boolean condition and an optional in-
teraction that is executed to handle the termination if the condition for the termination is
true. If no explicit termination condition is specified, the combined fragment only documents
the interactions that are executed if an unspecified termination condition is true. For the
precise specification of requirements, it is imperative, however, that the termination condi-
tions are explicitly documented. If a termination happens during the execution of a scenario,
only the interaction in the termination fragment is executed—that is, the execution of the
scenario ends after executing the interaction in the termination fragment. This happens even
if there are further interactions specified in the sequence diagram after the termination
fragment. These interactions are executed if the termination condition is not true during the
execution of the scenario. If a termination fragment does not contain an interaction, the sce-
nario ends right after the termination condition is true. Figure 88 shows an example of the
modeling a combined fragment of the type "break".

:Dispatcher

workstation

:On-Board-

System 1

:Fleet

management
:Dispatcher

:On-Board-

System 2

[Vehicle not available]Break

Cancellation

<<SuD>>

Figure 88: Modeling of a combined fragment of the type "break"

5.5.3 Nesting Fragments

The use of combined fragments makes it possible to model several potential sequences of a
scenario in a single sequence diagram. This is particularly true if combined fragments are
nested. For example, the use of a single alternative fragment that includes three alternative
interaction sequences models results in three possible executions of the scenario. In the case
of an optional fragment, at least two potential executions of the scenario are possible—one
that occurs if the corresponding condition for the execution of the interaction in the optional
fragment is true, and another if the condition is false. If one alternative within a combined
fragment of the type "alternative" itself contains a combined fragment of the type "optional",
two potential sequences of the scenario are possible with regard to the alternative interac-
tion. In a similar way, this also applies to the nesting of other types of fragments. Sequence
diagrams that contain such combined fragments therefore model several potential sequenc-
es of the corresponding scenario.

90 Scenario Modeling

In this way, sequence diagrams can model related main, alternative, and exception scenarios
(termination scenarios) in an understandable way. In this case, main, alternative, and excep-
tion scenarios are specified through a corresponding control flow of the scenario. Figure 89
shows an example of the modeling of combined nested fragments.

:Dispatcher

workstation

:On-Board-

System 1

:Fleet

management
:Dispatcher

:On-Board-

System 2

<<SuD>>

[Vehicle not available]Break

Cancellation

Order cancellation

Acceptance

Loop(0,3) [Cancellation not successful]

Figure 89: Modeling of combined nested fragments

5.5.4 Modeling Assumptions of a Scenario

Scenarios are typically based on a number of assumptions whose validity is assumed so that
the scenario can actually be executed in the way it is modeled. If scenarios are modeled in
sequence diagrams, the assumptions can be specified as textual annotations that are linked
to the related model elements within the scenario. Figure 90 shows a simple example of the
modeling of assumptions on which a scenario is based.

Figure 90: Modeling of assumptions for a scenario

The relationship between model elements of the sequence diagram and the associated as-
sumptions is shown via a directed dependency relationship with the stereotype <<assump-
tion>> (cf. Section 1.8). As shown in the figure, the assumptions can relate to the entire sce-
nario or to single model elements within the scenario. The statement of such an assumption
is, for example, that the scenario can only be completed successfully if ":MapServer" satisfies

sd Record navigation data

:Driver :Map Server

Navigation request

Request destination

Route selection

Request routes

Destination

Selected route

Possible routes

Inquiry route data

Route data

Display route data

Start navigation

Navigation started

<<SuD>>

:Nav.

The map server is able to
determine various route options

The data connection between
:Nav. and :MapServer is

continuously available with
sufficient performance

(i.e. >1 Mbit/s).

:MapServer

Query route data

5.6 Scenario Modeling with Communication Diagrams 91

the related assumption. This allows the exclusion of exception cases that do not contribute
to the general understanding of the scenario, for example.

5.6 Scenario Modeling with Communication Diagrams

Figure 91 shows the model elements of UML communication diagrams which are used for
modeling scenarios. Communication diagrams also have an outer frame which contains the
name of the scenario modeled by the communication diagram in a register at the top left.
The name of the scenario typically has the keyword "cm" as a prefix, indicating that the
scenario is modeled by a communication diagram. A lifeline represents one instance of an
actor within the scenario. The naming of the lifeline follows the pattern instance
name:type name (e.g., Peter:Driver). A direct message exchange between two in-
stances within the scenario is modeled by a connecting line between these instances in the
communication diagram.

Name

:Name

Notation

Lifeline

cm Name

Frame

Message exchange

Explanation

Frame of the communication

diagram

Lifeline of an actor

in the scenario

Direction of communication

Sequence number: messageMessage signature

Models a generic message

exchange between actors

Models the direction of

a message exchange

Each message in a scenario

is provided with a sequence

number corresponding to the

order of occurrence of

a message

Figure 91: Model elements of communication diagrams for modeling scenarios

Each message that is exchanged between instances within the scenario is annotated with a
message signature at the corresponding connecting line. The message signature consists of
the actual message and the sequence number of the message exchange in the scenario. The
direction of communication of a message is indicated by an arrow.

5.7 Examples of Typical Diagrams in the Scenario View

With the help of various types of combined fragments, we can model complex interactions
between actors and between actors and the system under development. Table 4 summarizes
typical uses of combined fragments in scenario modeling as well as the consideration of sce-
narios within use cases.

92 Scenario Modeling

Scenario level Scenarios at the use case level Fragment

Modeling of alternative sequences of messages
between communication partners

Modeling of alternative extend relationships be-
tween use cases at an extension point

Alt

Modeling of optional messages between com-
munication partners

Modeling of individual extend relationships be-
tween use cases that do not consider exception
handling

Opt

Abstraction of a combined sequence of messag-
es, e.g., for controlling complexity and improving
readability

Modeling of include relationships between use
cases

Ref

Modeling of repetitions of messages between
communication partners within scenarios de-
pending on conditions

— Loop

Modeling of exception handling in scenarios
Exception handling via extend relationships be-
tween use cases

Break

Table 4: Typical uses of combined fragments in modeling scenarios

This section illustrates the use of the above types of combined fragments in the context of
scenario modeling based on typical excerpts from the scenario view of a dispatcher’s work-
station in transport management.

5.7.1 Modeling Scenarios using Sequence Diagrams

Figure 92 and Figure 93 show an excerpt from the scenario view for a dispatcher’s work-
station in the form of two UML/SysML sequence diagrams. The sequence diagram shown in
Figure 92 illustrates the scenario "Provide replacement vehicle", which models the interac-
tion between the instances :On-Board System 2, :On-Board System 1,
:Dispatcher Workstation, :Dispatcher, :Fleet Management and :Order ac-
ceptance. These interactions have to take place so that a replacement vehicle can be pro-
vided. The dispatcher workstation represents the software system under development; the
other communication partners in the scenario are instances of actors in the system context.

The scenario shown uses both basic model elements for scenario modeling with UML/SysML
sequence diagrams and advanced model elements: two repetition fragments (keyword
"loop") and a termination fragment (keyword "break"). The first repetition fragment models
that the dispatcher workstation attempts to send the transport documents a maximum of
three times. After the dispatcher workstation sends the transport documents, it waits for the
acceptance by the on-board system of the replacement vehicle (i.e., a synchronous message).
This interaction is executed as long as the condition "Acceptance not successful" is true. If
the condition is false when entering the combined fragment, the corresponding interaction
in the combined fragment is no longer executed. The dispatcher workstation sends the asyn-
chronous message "Vehicle selection" to the dispatcher.

5.7 Examples of Typical Diagrams in the Scenario View 93

sd Provide replacement vehicle

Request for vehicle

Available vehicles

Vehicle selection

Transportation documents

Acceptance

Info acceptance

Vehicle booking

Dispatch data

Loop(0,3) [Acceptance not successful]

[Vehicle not available]Break

Cancellation

Order cancellation

Acceptance

Loop(0,3) [Cancellation not successful]

:Customer:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance

:Fleet

management
:Dispatcher

:On-Board-

System 2

<<SuD>>

Figure 92: Example of a scenario modeled through a sequence diagram

The termination fragment models that if the condition "Vehicle not available" is true, an
asynchronous message is sent from the dispatcher workstation to the dispatcher. It also
models the interaction to cancel the order between the dispatcher workstation and the on-
board system, which is repeated a maximum of three times. If the condition "Cancelation not
successful" is true when entering this fragment (i.e., the cancelation was unsuccessful), the
interaction within the repetition fragment is no longer executed. If the termination fragment
was entered, the scenario terminates after the execution of the interaction within the termi-
nation fragment, meaning that the asynchronous message "Dispatch data" is no longer sent
from the dispatcher workstation to the order acceptance.

Figure 93 illustrates the sequence diagram that models the scenario "Replacement order for
transport damage". It shows the interaction between the instances :On-Board System 2,
:On-Board System 1, :Dispatcher Workstation, :Dispatcher, :Fleet Manage-
ment, :Order Acceptance and Customer, which has to take place so that a substitute
delivery can be notified in the case of transport damage. Various advanced model elements
of scenario modeling with sequence diagrams were used to model the scenario "Replace-
ment order for transport damage". For example, the alternative fragment at the beginning
models that if the electronic message for transport damage occurs, the transport damage
message is sent from the on-board system of the vehicle to the dispatcher workstation which
then sends a message containing the damage information to the dispatcher. Alternatively,
the transport damage message can reach the dispatcher in other ways. In this case, the mes-
sage about damage that has occurred is sent directly to the dispatcher in another way (→
Found message). The dispatcher then has to enter the necessary damage information for fur-
ther processing via the dispatcher workstation.

94 Scenario Modeling

sd Replacement order for transport damage

Transport damage message

Damage info

Request cargo data

Request travel history

Request replacement order

Order data

ref
Provide replacement vehicle

opt [Premium customer]Replacement transport data

Damage info

Transport damage message

[Electronic message]

[Manual message]

Confirmation replacement transport data

alt

:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance
:Customer

:Fleet

management
:Dispatcher

:On-Board-

System 2

<<SuD>>

Figure 93: Example of a scenario modeled using a sequence diagram

The reference fragment in the lower part of the sequence diagram documents that at this
position in the sequence of the scenario, the interaction of the scenario "Provide replace-
ment vehicle" (Figure 92) is included. The optional fragment at the end of the sequence dia-
gram describes that, within the scenario, the dispatcher workstation sends a message with
the replacement transport data to the customer and waits for a confirmation. However, this
only occurs if the condition "Premium customer" is true, that is, if the transport customer is
a premium customer. If this is not the case, the scenario terminates at the end of the interac-
tions of the included scenario "Provide replacement vehicle".

5.7.2 Modeling Scenarios using Communication Diagrams

Figure 94 shows an excerpt from the scenario view for a dispatcher’s workstation in the
form of a UML communication diagram which models the scenario "Provide replacement
vehicle" (see also Figure 92). It is obvious from the figure that communication diagrams are
hardly suitable for modeling complex interaction-based behavior of scenarios since this dia-
gram type does not have model elements that allow the modeling of "optional" or "alterna-
tive" interaction sequences of scenarios. Moreover, communication diagrams do not have
model elements that allow the abstraction of parts of an interaction sequence by modeling
these interactions in a different diagram to which the parent diagram can reference. Never-
theless, communication diagrams are advantageous if the focus is on the bilateral exchange
of messages between instances of a scenario.

5.8 Further Reading 95

:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance

:Fleet

management
:Dispatcher

:On-Board-

System 2

Provide replacement vehicle

Fahrzeugwahl

Info Annahme

Fahrzeugbuchung

Disponierungsdaten

[Fahrzeug nicht verfügbar]Break

Stornierung

Auftragsstorno

Annahme

Loop(0,3) [Storno erfolgreich]

1:Request vehicle

2:Available vehicles

3:Transportation documents

4:Acceptance

7:Vehicle booking

5:Vehicle selection

6:Info acceptance

8:Confirmation booking

9:Dispatch data

:Customer

Figure 94: Example of a scenario modeled using a communication diagram

If the requirements engineer wants to model a scenario which does focus on this bilateral
exchange of messages, the use of this type of diagram is beneficial. If necessary, sequence di-
agrams may be used in addition to a communication diagram to model scenarios. This might
be the case, for example, if the focus is on modeling the properties of the bilateral interfaces
(human-machine and machine-machine) between the system under development and the
instances of actors.

5.8 Further Reading

Types of scenarios and their documentation

 Rolland, C.; Achour, C.; Cauvet, C.; Ralyté, J.; Sutcliffe, A.; Maiden, N.; Jarke, M.; Haumer, P.;
Pohl, K.; Dubois, E.; Heymans, P.: A Proposal for a Scenario Classification Framework. In:
Requirements Engineering, 3 (1998) 1, S.23-47

 Jacobson, I.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software Engi-
neering – A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

Scenario modeling in requirements engineering

 Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques. Springer, 2010.

Modeling of sequence and communication diagrams

 Object Management Group: OMG Systems Modeling Language (OMG SysML) Language
Specification v1.2. OMG Document Number: formal/2010-06-02.

 Object Management Group: OMG Unified Modeling Language (OMG UML), Superstructure,
Language Specification v2.41.

 Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference Manual,
Addison Wesley, 2004.

97

Glossary

This glossary is partly based on: Glinz, M.: A Glossary of Requirements Engineering Terminolo-
gy. Standard Glossary of the Certified Professional for Requirements Engineering (CPRE) Stud-
ies and Exam, Version 1.1, May 2011.

Action In requirements modeling, a function of the system that
cannot be decomposed any further from a requirements
perspective; a primitive function.

Activity In requirements modeling, a complex function of the sys-
tem under development that, from a requirements perspec-
tive, can be decomposed into further activities or actions.

Activity diagram A diagram type in UML which models the flow of actions in
a system or in a component, including data flows and
areas of responsibility where necessary.

Actor A person or a technical system in the context of a system
which interacts with the system under development.

Aggregation Special type of association for modeling part/whole rela-
tionships.

Alternative scenario A scenario which describes an alternative sequence of in-
teractions, related to the basic scenario, for achieving the
technical added value.

Association A relationship between model elements—for example, a re-
lationship between ↑classes in a ↑class diagram.

Attribute A characteristic property of an ↑entity or an object. Attrib-
utes are defined on a type level, that is, entity types (ER dia-
grams) or classes (class diagram).

Main scenario A scenario which, in relation to a specific outcome (e.g., a
specific added value), describes the predominantly occur-
ring sequence of interactions for achieving this result.

Class Represents a set of ↑objects of the same kind by describing
the structure of the objects, the ways they can be manipulat-
ed, and how they behave.

Class diagram A diagrammatic representation of a ↑class model or a part of
a class model.

Communication diagram A diagram for modeling the behavior in the interaction-
related ↑view which considers a logically related set of
↑interactions between objects and/or communication part-
ners which focuses on the visualization of bilateral
↑interactions between communication partners. The causal
order of ↑interactions is indicated here by sequence num-
bers.

98 Glossary

Composition Special type of ↑association for modeling part/whole rela-
tion-ships.

Context diagram 1. A diagrammatic representation of a ↑context model.

2. In ↑Structured Analysis, the context diagram is the root of
the data flow diagram hierarchy.

Context view A ↑requirements view which focuses on the demarcation of
the ↑system boundary from the ↑context, that is, on the con-
sideration of the ↑actors or neighboring systems of the
↑system under development and the interfaces between the
system and these neighboring systems. In the context view,
often only the ↑operational context of the system under de-
velopment is modeled by ↑context diagrams.

Control flow Temporal or logical sequence of, for example, ↑functions,
↑actions, or ↑activities.

Data flow Representation of information (in a ↑data flow diagram or
↑activity diagram) that is exchanged between the ↑system
context and/or ↑functions of the ↑system. (Data in motion,
inputs and outputs of ↑functions).

Data flow diagram A diagram modeling the ↑functionality of a ↑system or com-
ponent using processes (also called activities), data stores,
and data flows. Incoming data flows trigger processes which
then consume the received data, transform it, read/write
persistent data held in data stores, and then produce new
data flows which may be intermediate results that trigger
other processes or final results that leave the system.

Data type Specification of a complex information structure for the def-
inition of ↑attributes.

Diagram Graphical description of a coherent set of properties of the
object under consideration. Instance of a specific ↑diagram
type.

Diagram type Defines a class of "similar" ↑diagrams and is defined by a
↑modeling language.

Event: Timeless event that characterizes the occurrence of a condi-
tion, the termination of an ↑action or ↑activity, or the arrival
of a ↑data flow or message.

Exception scenario A ↑scenario describing a sequence of ↑interactions that must
be executed if a defined exception event has occurred during
operation of the ↑system. In requirements engineering,
↑exception scenarios are often specified complementary to
the ↑main scenario and/or ↑alternative scenarios for the
controlled treatment of scenarios.

Function (of a system) In requirements models, a generic term for use cases,
↑activities, or ↑actions that are required in a requirements
specification for the ↑system.

Glossary 99

Generalization A concept for the abstraction of common properties such as
↑classes, in which the common properties are merged into a
generalized concept and the differences are depicted in re-
spective specialized concepts.

Instance scenario A ↑scenario in which communication partners and interac-
tions are considered at the instance level.

Interaction An interaction is a flow of tangible (e.g., money) or intangi-
ble things (e.g., information) between two or more commu-
nication partners.

Interaction-based view The interaction-based view is a special ↑dynamic view of the
↑requirements of the ↑system under development in which
the behavior is observed through interactions between
communication partners.

Model Abstracting image of an existing reality or an example for a
planned reality (e.g., a system).

Model element An atomic component of a diagram or a textual supplement
to the requirements model. A model element typically repre-
sents a single requirement for the system.

Modeling construct An atomic component of a diagram type (e.g., class, associa-
tion, state, or state transition).

Modeling language A ↑language for expressing ↑models of a certain type. May be
textual, graphic, symbolic, or a combination thereof.

Object An occurrence/instance of a class.

Operational context The part of the ↑system context with which the ↑system has
a functional interaction during operation—for example, us-
ers, other systems, technical or physical processes, or busi-
ness processes.

Pragmatic quality Extent to which a ↑diagram/↑model serves its intended pur-
pose in terms of the adequacy of abstraction.

Pragmatics Part of the definition of a ↑modeling language which de-
scribes the intended use and possibly also describes the
form and specific purpose of abstraction in order to fulfill
the intended use as well as possible.

Process flow See Control flow

Requirements view Defines, for reasons of complexity control, a specific abstrac-
tion of the requirements of a system in which only certain
facts (e.g., ↑states and ↑state transitions of the system under
development) have been considered and others have delib-
erately not been considered. Typically, the different views of
the requirements can be combined into an overall model of
the requirements.

100 Glossary

Requirements model A ↑model that has been created with the purpose of specify-
ing ↑requirements. Consists of diagrams of various require-
ments views and textual additions.

Role Designation of a class from the perspective of the other
↑class for an ↑association.

Scenario An ↑interaction between communication partners (often be-
tween the ↑system under development and ↑actors in the
system context) that leads to a desired (or possibly unwant-
ed) result. In requirements engineering, the added value for
an ↑actor in the system context is often seen as an essential
result of a ↑scenario.

Semantics Part of the definition of a modeling language; defines the
general meaning of the notation elements (i.e., generally
What is the meaning of a class in a class diagram? Not
What is the meaning of the class "customer" in the class dia-
gram?).

Semantic quality Extent to which a ↑diagram/↑model reflects the specific view
of the object under observation correctly and completely.

Sequence diagram A diagram type in ↑UML which models the interactions be-
tween a selected set of objects and/or ↑actors in the sequen-
tial order in which those interactions occur.

Signal An ↑event in or outside the system which is relevant to the
↑system under development.

State A state is a summary of certain conditions that apply during
a time interval for a ↑ system or subsystem.

State diagram The graphical representation of a state machine.

State machine Through a summary of ↑states and ↑transitions between
these states, a state machine describes the behavior or part
of the behavior of the object considered (e.g., an ↑actor, a
↑function, a ↑use case, or the ↑system).

State machine diagram See ↑State diagram

Statechart See State machine

Syntactic quality Extent to which the ↑diagram/↑model satisfies the underly-
ing syntactic rules.

Syntax Part of the definition of a ↑modeling language that defines
the way the available notation elements in the modeling lan-
guage can be combined (the grammar).

System Entity with defined borders and an interface through which
the entity interacts with its environment (context). Typically
consists of a set of related components.

System boundary Demarcates the ↑system from its context (e.g., via responsi-
bilities and exclusions).

Glossary 101

System context Aspects outside the system that are relevant for the defini-
tion of the ↑requirements of a system and their relationships
to each other and to the system under development. The sys-
tem context includes the ↑operational context, that is, the
part of the environment with which the operational system
is in a functional interaction.

System environment See Operational context

System under development The system considered in the context of requirements engi-
neering or requirements modelling.

System under study A system to be considered or analyzed in the context of sys-
tem analysis. Not necessarily the object of development.

Transition A change from one ↑state to another initiated by a trigger.

Trigger The processing of a signal as an actuator for a transition.

Type scenario A scenario in which communication partners and interac-
tions (↑) are considered at the type level. Scenarios (↑) with-
in a use case specification are often at the type level, that is,
they consider types of communication partners and types of
interactions.

Use case A description of the possible interaction between an actor
and the system which, when executed, yields an added value.

Use case diagram A diagram type of UML which allows the modeling of ↑actors
and ↑use cases of a system. The line between actor and use
case represents the ↑system boundary. Use case specifica-
tion: The textual description of a use case.

Use case scenario A possible sequence (trace) of the interactions within a use
case. The possible sequences are represented by the main,
alternative, and exception scenarios of the use case.

View An abstract representation of the ↑system under develop-
ment, consisting of one or more ↑diagrams (with textual ad-
ditions). Views can be disjoint or overlapping. Deliberate
overlaps are applied for quality assurance of the models (to
produce consistency by viewing the system from several
perspectives).

103

List of Abbreviations

AD Activity diagram

BPMN Business Process Modeling Notation

CM Communication diagram

CPRE Certified Professional for Requirements Engineering

CRM Customer relationship management

DFD Data flow diagram

EPC Event-driven process chain

ER Entity relationship

FMC Fundamental modeling concepts

IREB International Requirements Engineering Board

ISO International Organization for Standardization

IT Information technology

ITU International Telecommunication Union

OMG Object Management Group

RE Requirements engineering

SA Structured Analysis

SD Sequence diagram

SuD System under development

SuS System under development

SysML System Modeling Language

UML Unified Modeling Language

105

References

[BDH2012] Broy, M.; Damm, W.; Henkler, S.; Pohl, K.; Vogelsang, A.; Weyer, T.: Introduction
to the SPES Modeling Framework. In: Pohl, K.; Hönninger, H.; Achatz, R.; Broy, M.: Model-
Based Engineering of Embedded Systems, Springer, Heidelberg 2012.

[Caro1995] Carroll, J. M.: The Scenario Perspective on System Development. In: J. M. Caroll
(Hrsg.): Scenario-Based Design – Envisioning Work and Technology in System Develop-
ment, Wiley, New York, 1995, S. 1-17.

[Chen1976] Chen, P.: The Entity-Relationship Model: Towards a Unified View of Data, ACM
Transactions on Database Systems, 1976.

[CoNM1996] Coad, P.; D. North, D.; Mayfield, M.: Object Models: Strategies, Patterns, and Ap-
plications, Prentice Hall, 1996.

[Cock2000] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Longman, Amster-
dam 2000.

[Cohn2002] Cohn, M.: User Stories Applied: For Agile Software Development, Addison Wes-
ley, 2002.

[DaLF1993] Dardenne, A.; Van Lamsweerde, A.; Fickas, S.: Goal-Directed Requirements Ac-
quisition. Science of Computer Programming, Vol. 20, No. 1-2, Elsevier Science, Amster-
dam, 1993, p. 3-50.

[DaTW2012] Daun, M.; Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.; Hön-
ninger, H.; Achatz, R.; Broy, M.: Model-Based Engineering of Embedded Systems, Springer,
Heidelberg 2012.

[Davi1993] Davis, A. M.: Software Requirements – Objects, Functions, States. 2nd Edition,
Prentice Hall, Englewood Cliffs, New Jersey 1993.

[DeMa1979] DeMarco, T.: Structured Analysis and System Specification, Yourdon Press,
Prentice Hall, 1979

[Fowl1996] Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Read-
ing, MA 1996.

[GaJV1996] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns - Elements of Re-
usable Object-Oriented Software. Addison-Wesley, Reading, MA 1994.

[GaSa1977] Gane, C.; Sarson, T.: Structured Systems Analysis – Tools & Techniques. Im-
proved System Technologies, New York 1977.

[Glin2011] Glinz, M.: A Glossary of Requirements Engineering Terminology. Standard Glos-
sary of the Certified Professional for Requirements Engineering (CPRE) Studies and Exam,
Version 1.1, May 2011.

[HaCa1993] Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Busi-
ness Revolution, Harper Business Essentials, 1993.

[HaHP2001] Hatley, D., Hruschka, P., Pirbhai, I.: A Process for System Architecture and Re-
quirements Engineering, Dorset House, 2001.

106 References

[Hare1987] Harel, D.: Statecharts – A Visual Formalism for Complex Systems. Science of
Computer Programming, Vol. 8, No. 3, 1987, p. 231-274.

[HKDW2012] Hilbrich, R.; Van Kampenhout, J. R.; Daun, M.; Weyer, T.: Modeling Quality As-
pects: Real-Time. In: Pohl, K.; Hönninger, H.; Achatz, R.; Broy, M.: Model-Based Engineer-
ing of Embedded Systems, Springer, Heidelberg 2012.

[IEEE1471] IEEE Recommended Practice for Architectural Description of Software Intensive
Systems. IEEE Standard 1471-2000.

[ISO25010] ISO/IEC/IEEE Systems and Software Engineering – Systems and Software Quali-
ty Requirements and Evaluation. ISO/IEC/IEEE Standard 25010:2011.

[ISO26702] ISO/IEC/IEEE Systems and Software Engineering – Application and Manage-
ment of the Systems Engineering Process. ISO/IEC/IEEE Standard 26702:2005.

[ISO29148] ISO/IEC/IEEE Systems and Software Engineering – Life Cycle Processes – Re-
quirements Engineering. ISO/IEC/IEEE Standard 29148:2011.

[ISO42010] ISO/IEC/IEEE Systems and Software Engineering – Architecture description.
ISO/IEC/IEEE Standard 42010:2011.

[ITU2004] International Telecommunication Union: ITU-T Z.120 Message Sequence Chart
(MSC), 2004.

[JCJO1992] Jacobson, I.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Soft-
ware Engineering – A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

[LaSi1987] Larkin, J. H.; Simon, H. A.: Why a diagram is (sometimes) worth ten thousand
words. In: Cognitive Science, Vol. 11, 65-99.

[LiSS1997] Lindland, O. I.; Sindre, G.; Sølverg, A.: Understanding Quality in Conceptual Mod-
eling. IEEE Software, Vol. 22, No. 2, IEEE Press, 1994, 42-49.

[Mart1989] Martin, J.: Information Engineering, Book I – Introduction. Prentice Hall, Eng-
lewood Cliffs 1989.

[McPa1984] McMenamin, S. M.; Palmer, J. F.: Essential Systems Analysis. Prentice Hall, Lon-
don 1984.

[Nuse2001] Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE Comput-
er, Vol. 34, No. 3, IEEE Computer Society, Los Alamitos, 2001, 115-117.

[OMG2012] OMG Object Constraint Language (OCL); Version 2.3.1; January 2012
http://www.omg.org/spec/OCL/2.3.1.

[OMG2010a] Object Management Group: OMG Systems Modeling Language (OMG SysML)
Language Specification v1.2. OMG Document Number: formal/2010-06-02.

[OMG2010b] Object Management Group: OMG Unified Modeling Language (OMG UML), Su-
perstructure, Language Specification v2.41.

[OMG2010c] Object Management Group: OMG Unified Modeling Language (OMG UML), In-
frastructure, Language Specification v2.41.

[OMG2011] Object Management Group: OMG Business Process Model and Notation (OMG
UML), Language Specification v2.0.

[Pohl2010] Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques.
Springer, Heidelberg 2010.

References 107

[RuJB2004] Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference
Manual, Addison Wesley, Reading, MA 2004.

[BoRJ2005] Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide.
Addision Wesley, Reading, MA 2005.

[PoRu2011] Pohl, K.; Rupp, C.: Requirements Engineering Fundamentals - A Study Guide for
the Certified Professional for Requirements Engineering Exam - Foundation Level - IREB
compliant, RookyNook Computing, 2011.

[Pott1995] Potts, C.: Using Schematic Scenarios to Understand User Needs. In: Proceedings
of the ACM Symposium on Designing Interactive Systems – Processes, Practices, Methods
and Techniques (DIS’95), ACM, New York, 1995, S. 247-266.

[RaJa2001] B. Ramesh, M. Jarke: Toward Reference Models for Requirements Traceability.
IEEE Transactions on Software Engineering, Vol. 27, No. 1, IEEE Press, 2001, S. 58-93.

[RiWe2007] Rinke, T.; Weyer, T.: Defining Reference Models for Modeling Qualities - How
Requirements Engineering Techniques can Help. In: Proc. of the 13th Intl. Working Conf.
on Requirements Engineering – Foundation for Software Quality, Lecture Notes in Com-
puter Science, 4542, Springer 2007.

[RoRo2006] Robertson, S.; Robertson, J.: Mastering the Requirements Process. 2nd edition,
Addison-Wesley, Amsterdam, 2006.

[RAC1998] Rolland, C.; Achour, C.; Cauvet, C.; Ralyté, J.; Sutcliffe, A.; Maiden, N.; Jarke, M.;
Haumer, P.; Pohl, K.; Dubois, E.; Heymans, P.: A Proposal for a Scenario Classification
Framework. In: Requirements Engineering, 3 (1998) 1, S. 23-47.

[RoSc1977] Ross, D. T.; Schoman, K.E.: Structured Analysis for Requirements Definition. IEEE
Transactions on Software Engineering, Vol. 3, No. 1, 1977, p. 6-15.

[Sche2000] Scheer, A.-W.: ARIS - Business Process Modeling. 3rd edition. Springer, Berlin
2000.

[ShMe1988] Shlaer, S.; Mellor, S.: Object-oriented Systems Analysis – Modeling the World in
Data. Prentice Hall, Englewood Cliffs 1988.

