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Foreword
This Handbook complements the syllabus of the CPRE Requirements Elicitation module.

This Handbook is intended for training providers who want to offer seminars or training on
the CPRE Requirements Elicitation Practitioner and/or Specialist according to the IREB
standard. It is also aimed at training participants and interested parties who want to get a
detailed insight into the content of this module.

This Handbook is not a substitute for training on the topic. The Handbook represents a link
between the Syllabus (which lists and explains the learning objectives of the module) and the
broad range of literature that has been published on the topic.
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The contents of this Handbook, together with references to more detailed literature, support
training providers in preparing training participants for the certification exam. This
Handbook provides training participants and interested parties an opportunity to deepen
their knowledge of Requirements Engineering in an agile environment and to supplement the
detailed content based on the literature recommendations. In addition, this Handbook can
be used to refresh existing knowledge about the various topics of requirements elicitation,
for instance after having received the Requirements Elicitation Practitioner or Specialist
certificate.

Suggestions for improvements and corrections are always welcomel!

E-mail contact: info@ireb.org

We hope that you enjoy studying this Handbook and you will successfully pass the
certification exam for the IREB CPRE Requirements Modeling Practitioner or Specialist.

More information on the IREB CPRE Requirements Elicitation can be found at:
http://www.ireb.org.
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IREB CPRE module Requirements Modeling

In recent years, the scope and complexity of typical software-based systems have
increased significantly. This is reflected directly in the number of requirements arising and
the complexity in terms of the mutual dependencies between requirements. All forecasts
about the expected future increase in the size and complexity of software-based systems
predict that the number of requirements and the complexity of interdependencies will
continue to increase dramatically in the future. This becomes clear, for example, if we
consider the development trends in the field of business information systems in terms of the
Internet of Services (I0S) and Internet of Things (IoT) or the development in the field of
intelligent embedded systems. Both trends are paving the way for a somewhat revolutionary
penetration of the physical world by dynamic networked software-based systems, referred
to as "cyber-physical systems".

The first thing to note is that requirements are taking a central role in the development
process of software-based systems. What is more, the extent and complexity of the
requirements of a system are becoming more difficult to handle. Accordingly, the
specification of requirements has already reached its limits in many areas if this is done only
in natural language (i.e., in text form). In many cases, this has a lasting negative effect on the
development projects concerned. Due to the many advantages of using graphical models
with respect to readability, controlling complexity, automatic analyzability, and the
processing of extensive and complex situations, the use of graphical modeling of
requirements is increasing rapidly.

The IREB Certified Professional for Requirements Engineering module Requirements
Modeling provides the tools for specifying requirements of large and complex systems using
standardized and widely used modeling languages. Comprehensive tool support is available
for these modeling languages—from freeware tools to powerful commercial CASE tools,
there is great potential for automation and for seamless integration with other tools used in
development processes (e.g., for project and test management).

More information on the IREB Certified Professional for Requirements Engineering module
Requirements Modeling can be found at: http://www.ireb.org.
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1 Basic principles

Requirements play a fundamental role in the life cycle of systems. In particular, the Fehler!
Textmarke nicht definiert.development disciplines (such as architecture, design,
implementation, and testing) are based mainly on the requirements of the system as
specified during requirements engineering and are largely dependent on the quality of these
requirements. In addition to the development disciplines, activities such as maintenance and
service right up to decommissioning of the system and development of upstream activities
(e.g., assessment of the risks and costs of the development project) depend highly on the
requirements and their quality.

According to the IREB Glossary of Requirements Engineering Terminology [Glin2011], a
requirement is (1) a need that is perceived by a stakeholder or (2) a capability or property that
a system must have. Requirements engineering is concerned with ensuring that the
requirements of the system under development are formulated as completely, correctly,
and precisely as possible, thereby providing optimal support for the other development
disciplines and activities in the life cycle of the system.

1.1 The benefits of modeling requirements

Using a highly simplified example, Figure 1shows the difference between textual and
modeled requirements. The left-hand side shows four textual requirements which specify
necessary behavior in relation to the input of data via an entry screen. The right-hand side
shows a requirements diagram in which the corresponding requirements are modeled.

Textual requirements Modeled requirements
Req-1: The system shall display the entry Display entry
mask mask
Req-2: After the action "Show entry mask"
is completed, or after the action "Show k/
error" is completed, the system shall offer /=
the user the option to enter data
Req-3: After the action "Enter data" is

completed and if the data is ok, the system

shall store the data Enter data

Req-4: After the action "Enter data" is
completed and if the data is not ok, the
system shall issue an error message [Data ok

[Data
notokl _ { Issue error
\/ message

%

Figure 1: Textual requirements vs. modeled requirements
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As this simple example already indicates, modeling the requirements shows the necessary
behavior of the system in a more structured and understandable way. The reader can follow
the process step by step. Furthermore, this simple example clearly shows that the
interaction of the various aspects of the required system behavior are explicitly visible in the
modeled requirements, whereas this information is only implicitly present in the textual
requirements (see also [Davi1993]).

Typically, software systems today comprise significantly more complex processes, meaning
that the associated textual requirements are very extensive and complex. It is then difficult
for the reader to understand the interactions within such complex processes solely on the
basis of textual requirements.

1.2 Applications of requirements modeling

Today, there are various applications for modeling requirements in requirements
engineering, as explained in this section:

1.2.1.1 Modeling requirements as a means of specification

In this case, requirements diagrams replace textually specified requirements. This means
that requirements diagrams are used as the primary means for specifying the system
requirements or part of the system requirements. The requirements diagrams can (and
should) be supplemented by textual requirements or textual explanations, specifically when
a text is more compact or easier to handle than diagrams.

If all requirements still need to be available in textual form (e.g., due to contractual conditions
or certification requirements), they can be generated from the requirements models—for
example, using templates for converting requirements diagrams into text form.

1.2.1.2 Modeling existing textual requirements for the
purpose of testing

In this case, a requirements diagram is created for a logically coherent set of textually
specified requirements which, for example, specify a necessarily complex system behavior.
The purpose of this diagram is to check the comprehensibility of textual requirements or to
uncover inconsistencies or omissions in the textual requirements. Any defects uncovered are
then corrected in the textual requirements.

1.2.1.3 Modeling existing textual requirements for clarity

In this case, for example, modeled requirements are used to represent extensive and
complex relationships that affect the behavior of the system. However, this redundant form
of the specification can lead to significant problems with regard to contradictions between
textually specified requirements and modeled requirements.
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1.3 Terms and concepts in requirements modeling

Using the general terms and concepts found in system modeling, the following explanation
looks at the terms and concepts relevant for modeling requirements as well as the important
relationships between the various terms and concepts. 2 shows a semantic network of the
basic terms and concepts relevant for requirements modeling. Terms that are already
defined in the IREB Glossary of Requirements Engineering Terminology are labeled with 1.

The system of terms is based on various definitions in the IREB Glossary of Requirements
Engineering Terminology [Glin2011] and complements this glossary with terms and concepts
that are particularly essential for requirements modeling. A model is regarded as an
abstracting image of the properties of a system.

To make the scope and complexity of the modeling manageable, various views of the
system (and its environment) and the properties of the system in relation to each specific
view are represented through diagrams and supplementary textual model elements. Each
diagram is based on a specific diagram type, which in turn is defined via a modeling language
(more precisely by syntax, semantics, and pragmatics). The underlying modeling language of
a diagram type defines the set of modeling constructs that can be used to construct the
corresponding diagrams (e.g., class and association for the construction of class diagrams).
In a modeling language, graphical and/or textual notations are defined for the modeling
constructs.
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Figure 2: Conceptual network of the core terminology in requirements modeling

A diagram consists of a set of model elements, each representing a specific graphical
modeling construct of the modeling language of the associated diagram type (e.g., class:
"person", association: "is employed by", class: "company").

Diagrams and graphical model elements can be supplemented by textual model elements
(e.g., textual description of the trigger of a use case) which express specific textual modeling
constructs (e.g., a section of a use case template). The graphical and textual model elements
form the atomic constituents of models.

A requirements model is a specific type of model (more precisely: a type of system model)
used to specify the requirements of a system with the aid of diagrams and textual
supplements.
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1.4 Requirements models

The individual requirements of a requirements model are represented by model elements
that are specified within requirements diagrams and via textual additions to these diagrams.

1.4.1 Modeling languages for requirements modeling

A number of diagram types and associated modeling languages are available for
requirements modeling. The selection of the diagram type to be used in each case depends
on the purpose, which thus determines which specific requirements of the system should be
documented and which persons are the "target audience" for the requirements models.

The relevance of a diagram type often also depends on the type of system (e.g., operational
information system or embedded system) and partly on the application domain (e.g., banks,
insurance companies, automation technology, vehicle/aircraft industry) for which the
system is being developed. Often (e.g., in embedded systems), requirements engineering
focuses on the reactive behavior of the system. This is because the size and complexity of
the required behavior of today's embedded systems are mainly determined by the
necessary reactivity of the systems. Therefore, state machine diagrams of the OMG SysML
[OMG2010a], OMG UML [OMG2010b], or MATLAB/Simulink Stateflow diagrams are used for
requirements modeling when developing embedded systems. The state machine diagrams
can be supplemented by complementary diagrams, such as use case diagrams, scenarios,
or activity diagrams. In contrast, business information systems (e.g., software for processing
loan applications) usually have no extensive and complex reactive behavior.

Therefore, when modeling requirements for such systems today, it is primarily diagram types
that allow the modeling of extensive and complex information structures (e.g., UML class
diagrams) that are used. Other diagram types used are those that allow the modeling of
process-oriented aspects, such as event-based process chains [[Sche2000] ] or BPMN
diagrams [OMG2011] as part of the business analysis, as well as UML activity diagrams—for
example, to model requirements with reference to the required flow logic of the system
under development. Here again, other complementary types of diagrams can be used—for
example state machine diagrams—in order to model the necessary requirements in terms of
reactivity of the system.

In addition to specific approaches such as event-driven process chains (EPCs) or BPMN,
which are often used in the context of business analysis or MATLAB/Simulink diagrams in
requirements modeling for embedded systems, the "universal" modeling approaches UML
and SysML are very often used for modeling requirements.

UML version 2.4 distinguishes between 14 different diagram types, seven of which are used
for structure modeling and seven diagram types are used for behavior modeling. Note that
the diagram type "profile diagram" is used to document language profiles (i.e., adaptations
and extensions to the modeling language) and not, like the other diagram types, for actual
system modeling.

SysML was designed specifically for modeling in the development of complex systems and
is a subset of UML extended with special diagram types and notation elements.
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The corresponding extensions relate to new structure diagrams (internal block diagrams,
block definition diagrams, parametric diagrams). SysML no longer contains the diagram type
"class diagram". With regard to the behavior diagrams, no new diagram types are introduced
in SysML,; instead, the behavioral diagram types of UML are used, whereby SysML activity
diagrams differ from the UML activity diagrams with respect to syntax and semantics.

1.4.2 Requirements modeling versus system design

In practice, it is sometimes difficult to distinguish between requirements diagrams and
design diagrams (see, e.g., [BoRJ2005]). The cause is frequently seen in the fact that the
same universal modeling languages are used for requirements modeling, such as UML or
SysML. In fact, the cause in most cases is that the alleged requirements diagrams specify
not requirements but rather the system design, or that requirements and design are mixed in
diagrams.

The latter is the case, for example, when the required system behavior is already modeled in
relation to individual, specific design decisions in a diagram and these design decisions are
not specified by boundary conditions (constraints), for example, in terms of the technology
to be used (see Section 1.5).

1.4.2.1 Requirements diagrams and design diagrams in system
analysis

As part of the system analysis, it is often the case that both design diagrams and
requirements diagrams are created. The first step in system analysis is typically the analysis
of an existing system. The "system" can be anything from an individual software system to
complex socio-technical systems where a variety of software systems and people (or roles)
cooperate in order to fulfill an overarching purpose, as is the case, for example, in complex
business information systems.

The system analysis itself can be performed from different perspectives, such as function-
centered or data-centered (see, e.g., [DeMal1979] and [ShMe1988]). In the context of system
analysis, the system under development is often initially analyzed (e.g., the systemin
operation and the associated documentation) and modeled in the form of diagrams as itis
perceived. In this case, the technical incarnation of the system is modeled first, that is, the
concrete technical solution as it is in operation (see [McPa1984]).

The corresponding model of the incarnation is then analyzed in terms of the underlying
technical aspects, meaning that it is abstracted from the concrete technical implementation
to identify the business core. The result of this activity is a model of the functional
requirements of the system under development.

Both models—the incarnation model (i.e., the technical solution) and the model of the
functional requirements (also referred to as the essence model)—are factual models, that is,
models that document the existing properties of the system under development (SuD). As
part of the system analysis, a target model is then often formulated based on the model of
the functional requirements.
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This target model specifies which technical requirements are to be implemented by a newly
developed system or as part of a change project. These technical requirements are then
incorporated back into the development process. In typical systems analysis processes,
therefore, both requirements diagrams and design diagrams are created. The goal of system
analysis is to model the functional requirements of the system under development.

1.4.2.2 Relationship between requirements models and design
models

During the development of complex software systems, requirements and design are often
developed with very strong links. This close link between the development of requirements
and the definition of a solution in the form of a system design is illustrated with the twin
peaks model shown in Figure 3 (cf. [Nuse2001]).

Design decisions
Degree of solution Design constraints
relatednesst

Dissection planes of
the total system

Low

High | & Seo______----%

y

Requirements models . Design models

Problem view Solution view

Figure 3: Relationship between requirements and design

As illustrated in the figure, during the development of complex software systems, there is a
strong interaction between the definition of requirements and the system design. Typically,
the first step is to produce a set of more general requirements for the complete system. This
set of requirements is then the basis for the definition of the preliminary system architecture
which satisfies these requirements.

During the transition between requirements definition and system design, design decisions
have to be made and the given conditions for the design (design constraints) have to be met
(e.g., the specification of a style of architecture to be used). Starting from the initial system
architecture, which consists for example of (logical) subsystems, the requirements for the
individual subsystems can be specified. If sufficiently detailed requirements are available,
the initial system design is refined.

As an example, Figure 3 illustrates the relationship between the requirements and design of a
technical system (complete system) which is initially abstracted from the separation
between hardware and software. The requirements for the actual software of the system are
first specified on the third system level.
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For pure software development projects, the software to be developed is classified at the
highest system level. On the lower system levels, logical components and software parts are
then considered (see, e.g., [ISO26702], [HaHP2001]).

In this approach, the design decisions at one level significantly affect the definition of
requirements at the next lower level of detail—that is, the requirements of the next level are
based on the design decisions previously made which in turn represent a framework for the
specification of requirements at the next lower level. Even though there is a close link
between requirements and architectural design, within the scope of requirements modeling
itis all the more important to strictly separate the requirements model from the design
model and to establish the relationships through appropriate dependency relationships (see
Section 1.9). More details can be found in [Pohl2010], [BDH2012], and [HaHP2001].

1.5 Views in requirements modeling

The foundation level of the Certified Professional for Requirements Engineering
distinguishes between three views in the modeling of functional requirements
(cf. [PoRu2011]), namely:

1. the static-structural view
2. the behavioral view
3. the functional view

Building on these basic views of requirements modeling, a more differentiating set of views is
presented below (see Figure 4).!

'The creation of views can be established in various ways within the scope of requirements engineering. For example, views can
be defined that address specific concerns of stakeholders. A "user view" can be defined of the requirements of the system,
for example. This view considers (models) only those requirements that directly concern the use of the system under
development. In a "maintenance engineering view", only those system requirements that relate directly to the maintenance of
the system would be considered. Various "philosophies” for establishing views can be applied in combination to control the
scope and complexity of requirements modeling. It is conceivable, for example, that the user view and the maintenance
engineering view are each considered from an information structure view and a dynamic view. Through common concepts or
mapping relationships, the requirements models of the different views can then be integrated into an overall model.
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Requirements View

- T

Context View Information-Structure View Dynamic View
Class Diagram (IREB AL)
ity-relationship Diagram

State-oriented View
State Machine Diagram (IREB AL)
Control-Flow-oriented View Finite Automaton
Activity Diagram (IREB AL) Statecharts
Event-driven Process Chain Simulink Stateflow
Business Process Modeling Language

Use Case View
Use Case Diagram
(IREB AL)

Data-Flow-oriented View
Data-Flow Diagram (IREB AL) ; .
Activity Diagram with Object-Flow / Data-Flow Scenario View
(IREB AL) Sequence Diagram (IREB AL)
Communication Diagram (IREB AL)

Simulink Block Diagram
Message Sequence Charts according to ITU Z.120

Figure 4: Views in requirements modeling in the IREB module Requirements Modeling

A key challenge in requirements engineering is to understand the context of the system
under development (e.g., the software to be developed). This includes the knowledge of what
other systems are related to the system under development in an operational context,
properties of these external systems, as well as knowledge about which roles, people
interact with the system and which properties they have that are relevant for the system.

Context modeling is typically used to identify the necessary interfaces between the system
under development and its context.

1.5.1 Information structure view

The information structure view focuses on requirements of the system under development
which are related to static and structural aspects of the functionality, such as the structure
of data to be processed by the system. Typical diagram types used here are class diagrams
or various dialects of entity-relationship diagrams (e.g., according to Chen or in the FMC
approach).

1.5.2 Dynamic view

The dynamic view focuses on those requirements of the system under development which
are related to dynamic aspects of the functionality (seeg, e.g., [BoRJ2005]). For the purposes
of the foundation level of the Certified Professional for Requirements Engineering, the
dynamic view of the requirements of a system is formed through the behavioral and
functional views.
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To model the requirements in the dynamic view, in Requirements Modeling, the dynamic
view is strongly differentiated (see Section 1.6). Typical diagram types used for requirements
modeling here are use case diagrams, activity diagrams, state machine diagrams, data flow
diagrams, and sequence diagrams.

1.5.3 Quality view

The quality view focuses on those requirements of the system which relate to necessary
qualities of the system under development or individual system components. Although there
are a number of approaches for model-based specification of quality requirements
currently being researched (seeg, e.g., [HKDW2012]), in practice today quality requirements
(regarding, for example, performance, reliability, real-time behavior, safety, or robustness)
are still specified within requirements models mainly by textual supplements or as an
annotation to specific model elements in requirements diagrams (seg, e.g., [Riwe2007]).

A detailed taxonomy of requirements in the quality view (quality requirements) can be found
in ISO 25010 [ISO25010]. Detailed information on the documentation of requirements in the
quality view can be found in [Pohl2010].

1.5.4 Constraints view

The constraints view focuses on requirements in terms of boundary conditions (i.e., external
constraints) to be adhered to by the system under development (or the associated
development process) (see [1SO029148]). Typical boundary conditions include organizational,
regulatory, or technological conditions.

Technological constraints occur, for example, in the form of design constraints (e.g.,
service-based or client-server) which define a specific architectural style for the system
under development.

Such constraints are often documented in textual form (or by textual additions in
requirements models), whereas specific types of diagrams such as class diagrams or
component diagrams are often also suitable for documenting organizational or technical
constraints. Detailed information about boundary conditions can be found in [RoR02006],
for example.

1.6 Views of the dynamic view in requirements modeling

The dynamic view in requirements modeling considers those requirements which relate to
the chronological-logical relationships in the required behavior of the system. Today's
business information systems—and intelligent embedded systems even more so—have a
very extensive and complex structure of such relationships. These relationships have to be
elicited and analyzed and specified in the requirements as part of requirements engineering.

To make the scope and complexity of such dynamic relationships in the system behavior
manageable within requirements modeling, the dynamic view is divided into views.
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The integration of these views leads to an overall model of the dynamic view of the
requirements of the system under development, as shown in Figure 4.

1.6.1 Use case view (user functions and dependencies to the
system context)

Within the dynamic view, the use case view considers the high-level system user functions
and their relationships to actors in the system context. A high-level user function
characterizes a functionality that the system must offer for an actor within the context to
gain a benefit (added value). Use case diagrams are typically used for modeling here.

1.6.2 Data flow-oriented view (system functions and data
dependencies)

Within the dynamic view, the data flow-oriented view considers the functions that are
perceptible at the system interface, as well as the data dependencies between these
functions and with actors in the system context. The functions can also be analyzed at
various levels of granularity, for example, from high-level user functions (e.g., use cases) to
finely detailed technical functions, the interaction of which implements the functionality of
the use case. Typical diagrams used here are data flow diagrams (e.g., according to
DeMarco [DeMa1979]) and activity diagrams that focus on the object flow between actions.

1.6.3 Control flow-oriented view (process flow logic)

Within the dynamic view, the control flow-oriented view considers the processes (or
activities or actions) perceptible at the interface of the system and their flow logic. The
control flow relationships are considered in processes that occur, for example, in the form of
sequential, alternating, or concurrent sequences.

UML or SysML activity diagrams are typically used to model the control flow-oriented view.
A special feature with regard to business analysis is that (extended) event-driven process
chains or BPMN diagrams are also used for modeling at business process level.

1.6.4 State-oriented view (states and state changes)

The required state space of the system is modeled in the state-oriented view within the
dynamic view. In particular, the model shows the reactive behavior of the system in relation
to the system context. The states and state changes that are observable at the interface
between the system and the system context are modeled in this view. A state change of the
system under development can be triggered by an event in the system context, by a time
event, or by an intrinsic event.

Finite automata, Harel Statecharts, or UML state machine diagrams based on these
concepts are typically used here.
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1.6.5 Scenario view (interaction sequences between actors
and the system)

The scenario view within the dynamic view considers interactions between actors in the
system context and the system which lead to one or more actors in the system context
obtaining added value or achieving a goal (e.g., obtaining cash by using an automated teller
machine). Scenarios are frequently used to make use cases in use case diagrams more
specific.

Here, the scenarios describe the interactions between the system and actors in the system
context that lead to successful execution of the use case. In scenario modeling, as well as
the immediate interaction between actors and the system under development, the message
exchange between actors in the context of the system is also typically modeled. UML/SysML
sequence diagrams or Message Sequence Charts according to the ITU standard Z.120
[ITU2004] are typically used to model scenarios.

1.7 Adapting modeling languages for requirements modeling

UML and SysML have a concept for adapting or extending the different modeling languages.
This is useful, for example, when specific concepts of a project or application domain are to
be anchored in the language. UML and SysML are typically adapted by defining stereotypes
to give notation elements a special meaning (or semantics).

In UML and SysML, all notation elements can be adapted or extended by stereotypes. The
definition of a stereotype consists of a syntactic part, in which the representation of
stereotypes and the desired references to notation elements are set, as well as a semantic
part which specifies the meaning of the stereotype.

In UML/SysML diagrams, stereotypes are modeled in the form of angle brackets. For
example, using the stereotype << domain >> for classes within a class diagram (¥ definition
of the syntax of the stereotype), it would be possible to express that classes that have this
stereotype are specific to the particular application domain and their technical meaning is
more precisely defined within a domain glossary (¥ definition of the semantics of the
stereotype).

1.8 Integrating textual requirements in the requirements
model

SysML differs from UML in that it has a special means of notation for modeling textual
requirements. It also defines a special type of diagram, the requirements diagram, which is
assigned to neither the structure view nor to the behavior view. This diagram type allows the
modeling of relationships between textual requirements or the attachment of textually
specified requirements to model elements of SysML diagrams and referencing of these
requirements.

This type of "modeling" of textual requirements is often used to include predetermined
requirements (e.g., from the point of view of a special field) in the requirements model.
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The main purpose of this integration is to relate the modeled requirements to the
predetermined textual requirements. This allows the expression of which modeled
requirements make a textual requirement more specific.

Most commercially available UML tools, however, already offer the possibility of using
textual requirements in any diagram type, and not only in requirements diagrams. This allows,
for example, the specification of textual requirements as an alternative to the diagrammatic
specification because in the opinion of a requirements engineer, certain requirements can be
specified more appropriately in textual form. For example, an action in a flow can be refined
through a number of textual requirements which are then included in the requirements
model and related to this action (by means of an appropriate tracing relationship, for
example).

Using this concept of integrating textually specified requirements in requirements models
allows us to specify quality requirements that relate to a specific action (e.g., requirements
concerning the performance of this action) as textual requirements by placing themin a
relationship with the action within the diagram in which the action was modeled.

Through this concept of complementary use of textual requirements, model elements from
the various diagram types for requirements modeling (and thus the corresponding diagrams)
can be extended in order to relate textual requirements to requirements diagrams within a
requirements model.

1.9 Documenting dependencies between model elements

Regardless of whether requirements are available in the form of requirements diagrams or in
textual form, they can be linked to one another in the course of model-based documentation
of requirements with UML/SysML using explicitly defined dependency relationships. To do
this, appropriate stereotypes for dependency relationships between model elements of the
requirements model can be defined (see also Section 1.7).

In many cases, the stereotype to be used (i.e., its syntax and semantics) depends heavily on
the project context and the application domain, which means that in a development project,
the project participants must define which dependency types are needed between
requirements (see also [Rada2001]). The required dependency relationships must then be
defined in the appropriate tools.

Typical examples of commonly found dependency relationships between model elements
within a requirements model are:

= <<refines>>: A <<refines>> B expresses that a single requirement or a set of
requirements A refines a single requirement or set of requirements B by, for example,
specifying one or more additional requirements to the requirements B.

= <<realizes >>: A << realizes >> B expresses that the requirements A realize the
requirements B. This is used, for example, when A represents the requirements for a
component that when met, lead to fulfilment of the requirements B for the entire
system.
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However, this type of tracing is based on the fact that either (1) design decisions
about the structure of the solution were taken in the development process, or (2) the
need for such a component or specifications about the structuring of the overall
system into components already exist as boundary conditions for requirements
engineering (cf. [BDH2012], for example).

= <<satisfies>>: A <<satisfies>> B expresses that a single requirement or set of
requirements A meets a single or a set of requirements B. This type of dependency
relationship is used, for example, in customer-supplier relationships when more
detailed requirements that have been specified by the contractor have to be related
to the more general requirements of the client to express that the requirements A of
the contractor meet the requirements B of the client.
This type of dependency is used to express relationships between requirements in the
system requirements specification and requirements in the customer requirements
specification—for example, to support evidence that, for the system under
development, the requirements specified in the system requirements specification
ensure that the realized system will meet the requirements in the customer
requirements specification.
The dependency type <<satisfies>> has a certain resemblance to the dependency
type <<realizes>>, whereby dependencies of the type <<satisfies>> are typically used
at the interface between client and contractor.

1.10 The benefits of requirements modeling

Compared to the textual specification of requirements, specification of requirements by
means of diagrams has a number of essential advantages:

= Requirements are easier to understand:
Cognitive research has shown that, generally, facts that are visualized in diagrams
are easier to understand and remember than corresponding textual descriptions of
these facts (cf. [LaSi1987]). In particular, this means that requirements specified in
diagram form are easier to understand and remember than requirements which exist
in textual form. "A picture is worth a thousand words!"

* Inherent support of the principle of "separation of concerns":
Diagram types are defined for a specific purpose and, through the available notation
elements (semantics) and the way the language allows these notation elements to be
combined (syntax), force the modeler to focus on a situation. For example, state
machine diagrams should be used to model the necessary reactive behavior of the
system under development as part of requirements modeling and not to model
processes or information structures. In requirements modeling, the separation of
concerns is established by different views. The requirements models of the individual
views can be integrated through common concepts. This allows us to make
statements across different views of requirements. Detailed information can be
found in [DaTW?2012].
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= Inherent support of the principle "divide and rule":
By using different diagram types, the specific requirements supported by that
particular diagram type can initially be modeled in isolation. The diagrams of different
types can be combined using common concepts or defined mapping relations in
order to obtain an integrated requirements model. This feature of diagram-based
specification of requirements supports the requirements engineer in breaking down
the overall problem— that is, the specification of the requirements of a system—into
manageable sub-problems (e.g., the specification of requirements for a subsystem).
The merging of the individual requirements models of the sub-problems then forms
the requirements model of the higher level system. More detailed information can be
found in [BDH2012] and [HaHP2001], for example.

*= Reduced risk of ambiguity:
Due to the higher degree of formality of modeling languages for requirements
modeling compared to natural languages, requirements specified in diagram form
have a lower risk of ambiguity or misinterpretation by other participants in the
development process (e.g., the architects, developers, testers).

= Higher potential for automated analysis of requirements:
Due to the higher degree of formality of requirements specified in diagram form
compared to requirements specified in text form, such requirements can be analyzed
to a large extent or even completely by machine (e.g., an analysis of the accessibility
of states in a requirements diagram of the state-oriented view).

= Higher potential for automatic processing of requirements:
The higher degree of formalization of requirements specified in diagram form also
increases the possibility of processing the requirements of the system further
automatically and using them in other development disciplines, for example, to derive
test cases for system testing from requirements diagrams of the control flow-
oriented view.

= Requirements in context:
The modeling of requirements leads to individual model elements within the
requirements model (see Section 1.3) and the relationships of individual requirements
to other requirements being represented directly in the requirements model. This
facilitates the handling of large and complex requirements and promotes
understanding of the requirements because the context of a requirement is visible to
the reader of the requirements in the requirements model. In an activity diagram, for
example, for every action it is immediately visible what other actions this actionis
related to and what change of state of the system under development s triggered by
the execution of the action.
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1.11 The quality of requirements models

The quality of a requirements model is based on the quality of its components. As described
in Section 1.1, the requirements model of a system is composed of a set of diagrams and
textual additions. When requirements are modeled, a substantial part of the requirements is
specified in the diagrams, which means that the quality of the requirements model is largely
determined by the quality of the individual diagrams and their mutual relationships.

In turn, the quality of the individual diagrams is determined by the quality of the model
elements within the diagrams and the associated textual additions. The left-hand pane in
Figure 5 illustrates the hierarchical structure of the evaluation of the quality of requirements
models.

Content correct
Quality of the requirements model and complete?
Semantic
Quality of the requirements diagrams T
Fit for use?
Pragmatic
Quality of the model elements
/ Meets syntactic

g demands?
Quality 5 gyptactic

Figure 5: Assessment of the quality of requirements models

The quality of the requirements model, the requirements diagrams, and model elements can
be assessed against three criteria (see [LiISS1997], for example):

» Syntactic quality
The syntactic quality expresses the extent to which a single model element (graphical
or textual), requirements diagram, or requirements model satisfies the applicable
syntactic specifications.
If the syntactic quality of a requirements diagram of the scenario view (which is in the
form of a UML sequence diagram) is to be assessed, the extent to which this diagram
meets the syntactic requirements of UML must be examined. For example, the syntax
of sequence diagrams prescribes that a synchronous message at a certain level of
detail consists of a function call and a reply message.
If, in a scenario modeled by a sequence diagram, a reply message occurs without a
preceding function call, this does not meet the syntactic specifications of the
underlying modeling language and thus reduces the syntactic quality of the diagram.
If appropriate modeling tools are used for modeling requirements, the syntactic
quality of the diagrams created is usually ensured by the tool.
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= Semantic quality
The semantic quality expresses the extent to which a single model element (graphical
or textual), the requirements diagram, or the requirements model correctly and
completely represents the facts. Let us assume, for example, that after the insertion
of a debit card into the card slot of an ATM, the customer’s PIN is required as the first
step.
If a relevant requirements diagram of the control flow-oriented view (e.g., an activity
diagram) models that after reading the card data, the customer is first asked for the
payment amount, this represents a semantic defect in the corresponding diagram
since the actual flow required deviates from the diagram.
Such a defect in a requirements diagram negatively affects the semantic quality of
the higher level requirements model.

* Pragmatic quality
The pragmatic quality expresses the extent to which a single model element
(graphical or textual), the requirements diagram, or the requirements model is
suitable for the intended use. This in particular raises the question of whether the
degree of detail and abstraction level is appropriate for the intended use. For a single
model element, this means whether the model element (such as a state transitionin a
state-oriented requirements model) is specified at the right level of detail (e.g., is only
the triggering event specified?
Or are the additional conditions applicable for the state change and the triggered
behavior indicated?). The pragmatic quality of an individual model element, a
requirements diagram, or a requirements model can only be assessed if the
addressee and the purpose of the diagram are known. Since the pragmatics
determine what abstractions are useful, this also has a direct impact on the
assessment of the semantic quality—that is, the completeness of a model element, a
requirements diagram, or a requirements model can only be assessed in terms of an
abstraction that is sensible from a pragmatic point of view.
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1.12 Further reading
Terminology in requirements modeling

= Glinz, M.: Glossary of Requirements Engineering Terminology. Standard Glossary of
the Certified Professional for Requirements Engineering (CPRE) Studies and Exam,
Version 1.1, May 2011.

Requirements modeling

= Pohl, K.: Requirements Engineering - Fundaments, Principles, Techniques. Springer
2010.

= Booch, G: Rumbaugh, J.; Jacobson, |.: The Unified Modeling Language User Guide.
Addison-Wesley 2005.

= Daun, M.;Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.; Honninger, H.;
Achatz, R.; Broy, M.: Model-Based Engineering of Embedded Systems, Springer,
Heidelberg 2012.

= Dauvis, A. M.: Software Requirements - Objects, Functions, States. 2nd Edition,
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

Quality of requirements models

= Lindland, O. I.: Sindre, G.; Sglverg, A.: Understanding Quality in Conceptual Modeling.
IEEE Software, Vol. 22, No. 2, IEEE Press, 1994, 42-49.

» Pohl, K.: Requirements Engineering - Fundaments, Principles, Techniques. Springer,
2010.
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2 Context modeling

A major challenge in requirements engineering is understanding the context of the system.
The more complex and critical the system under development is, the more importantitis to
understand and document the context. This includes knowledge about which other systems
influence the system under development in an operational context, properties of these
external systems, as well as knowledge about which roles or persons interact with the system
in an operational context and which properties that are relevant for the system they have. In
addition, context modeling also helps to identify the necessary interface of the system under
development.

2.1 Purpose

In requirements engineering, the scope of the system under development is defined (that is,
the system boundaries are specified) and the system under development is clearly
distinguished from its context. For this purpose, the influence of the context has to be
investigated and ideally documented. The more complex and more critical the system under
development is, the more important it is to document the knowledge about the context
effectively. This includes the knowledge about:

= Which roles and persons interact with the system in operation?

= What other systems are related to the system under development from an
operational perspective?

= How the interface between the system under development and the people and
systems is created in context?

Furthermore, the context view can help when considering the properties (functions, qualities)
of the external systems relevant for the system under development.

The context view documents properties of the system context. In contrast, the following
chapters mainly specify the perceivable necessary properties of the system that are in
scope and the system must have to fulfil its purpose in operation (including meeting the
goals of stakeholders and thereby complying with all conditions). The context view thus
documents a significant aspect of the work of requirements engineers when defining the
interface between the system and the context.

2.2 Context diagrams

From a requirements perspective, the context view defines the scope of a system, meaning
that it draws a line between functionality in and outside the scope. The classic context
diagram from Structured Analysis (SA) [DeMal1979] is often used as a means of
representation but today—because there are hardly any tools to support SA—many other
diagram types with equivalent content can be used (e.g., a UML class diagram, a use case
diagram, or a component diagram).In addition, a tabular representation can be used as a
substitute for a context diagram as long as the basic elements listed below are present.
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2.2.1 Basic elements of context diagrams

The three essential basic elements of a context diagram are:

= The system under development (more precisely, the system boundary)

= Neighboring systems or actors of the system under development (all people, roles, IT
systems, equipment, etc. with which the system has interfaces)

= The (logical) interfaces between the system and its neighboring systems

Experience shows that the interfaces between the system and the context can best be
determined by the incoming and outgoing data. The classical context diagram therefore
focuses on this input and output data from and to neighboring systems. In this sense, the
context diagram is the most abstract form of a data flow diagram (see Section 4.3) because
the complete functionality of the system is reduced to one function (namely the whole
system). The focus of this diagram is the identification of all interfaces of the system under
development.

2.2.2 Example of a context diagram

Figure 6 shows an example of a context diagram using Structured Analysis. The overall
system (an early warning system in the mining industry) is represented as a circle in the
middle. The human neighboring systems are shown in the example as stick figures and the
organizational and technical neighboring systems as boxes. The interface is modeled in the
form of data flows to and from the neighboring systems.

Warning
Sensor Admin
Operator Early A
Request Warning
Protocol

System

Day Results

Statistics
System

System
Messages

Operator

Figure 6: Example of a context diagram
Today, SysML block diagrams [OMG2010a] can be used to model the system context, for

example. Figure 7 shows the context diagram of an automated machine for the production
of cylinder heads for cars (see [DaTW2012]).
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Figure 7: Example of a context diagram in SysML block diagram form

The diagram shows actors in the system context and the data flows between actors and the

system under development. Such context diagrams based on SysML document very similar

information about the system context to context diagrams which are based on the data flow
diagrams of Structured Analysis.

2.2.3 Notation elements for modeling context diagrams with
data flow diagrams

Data flow diagrams can be used to model data flow-oriented context diagrams. Figure 8
shows possible model elements for the construction of data flow-oriented context diagrams
based on data flow diagrams according to DeMarco (cf. [DeMa1979]).

Name Notation Explanation

The system considered in the

System (SuD) scope of analysis/development
i i Name Neighboring system or
Nelghbormg SYStem / actor actor in system context

Name Flow of data between system
Data flow _— and system context

Figure 8: Possible modeling constructs of data flow-oriented context diagrams

In context modeling using data flow diagrams, the system under development is often
represented by a circle, sometimes a box or a cloud. The corresponding modeling construct
represents the system under development, which, for example, represents either a part of a
company, a business process, or a system to be automated. It thus expresses the scope of
the system under development (i.e., the system boundary). The presentation of the
neighboring systems is relatively arbitrary; often these are modeled as boxes but can also be
modeled as stick figures or as a 3D box or as double lines for external databases or "files".
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In Structured Analysis according to DeMarco, neighboring systems (sources and sinks) are
called terminators (= terminals). Neighboring systems or actors represent any kind of
communication end points of the system under development. Neighboring systems or
actors can on one hand be people who work with the system, but on the other hand
hardware/software systems, devices, sensors, actuators, or passive data storage (such as
databases or files)—that is, everything or everyone who delivers input to the system or
receives output from the system (or both). The neighboring systems thus represent parts of
the context of the system under development.

The data flows between neighboring systems or actors and the system under development
represent input and output interfaces of the system under development. These data flows
are mostly shown as straight or curved lines with an arrowhead to the system (for input),
arrowhead to the neighboring system (for output), or as a double arrow. Data flows in this
type of context diagram represent the incoming and outgoing data or control information.
Mostly, these arrows are interpreted as data flows into or out of the system. If control flows
are represented in this way, this should be explained in a legend to the diagram.

2.2.4 Pragmatic rules for context modeling with data flow
diagrams

The following pragmatic rules should be considered:

= All neighboring systems that interact with the system should be included in the
diagram (completeness of the communication partners).

= Allneighboring systems should be named (to clearly specify where the input comes
from and where the output goes to).

= Allinputs and outputs should be labeled with the logical name of the data flows
(because unnamed arrows indicate a lack of understanding of the interface).

2.3 Other types of context modeling

The cooperation between the system under development and the neighboring systemsin
the context is also the subject of the use case view (see Section 4.2) and the scenario view
(see Chapter b5). In addition to defining the system boundaries (scoping), the use cases are
used to roughly structure the system's functionality. With the scenario view, sequences of
communication and other communication details can be specified more precisely in addition
to the specification of the data flows. Current research includes proposals for context
modeling in a state-oriented view, in which the state of the system context and
corresponding state transitions are modeled.

There are also approaches for modeling static-structural aspects of the system context by
using information structure view diagrams. Other approaches to context modeling consider
the system in the context of a data flow-oriented view by modeling functions in the system
context (context functions) and documenting their relationship to functions of the system.
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Such approaches are used in particular for mechanical detection of unwanted functional
interactions between the system and its context (feature interactions). An overview of the
different types of context modeling in requirements engineering can be found in
[DaTW2012].

2.4 Further reading
Data flow-oriented context diagrams

= DeMarco, Tom: Structured Analysis and System Specification, Yourdon Press,
Prentice Hall, 1979.

= Daun, M.: Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.; Honninger,
H.; Achatz, R.; Broy, M.: Model-Based Engineering of Embedded Systems, Springer,
Heidelberg 2012.

Use case-oriented context diagrams

= Jacobson, |.: Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software
Engineering — A Use Case Driven Approach. Addison-Wesley, Reading, 1992.
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3 Information structure modeling

3.1 Purpose

The modeling of information structures has a central role in requirements modeling, mainly
because it has two tasks:

= Specification of technical terms and data
= Specification of requirements that relate to technical terms

A glossary is often used to define technical terms in requirements engineering. In a glossary,
the meaning of the terms in the domain or in the language of the client is defined. With the
introduction of information models, the content of a glossary is supplemented with
important information. Information modeling often starts by looking at all nouns that occur
either in textual requirements, or, for example, in data flow-oriented or control flow-oriented
requirements modeling in the naming of functions of the system (see Section 4.3).

In an information model, however, a lot of emphasis is placed on the relationships between
the terms. Expressing these relationships is one of the strengths of diagrams of the
information structure view compared to a textual, perhaps alphabetically arranged glossary.
The second step is to define the "attributes" of the terms. Attributes express the relevant
properties and technical information of a term. Thus, relevant properties can be clearly
represented in an information structure diagram—for example, for a customer ina CRM
system. With this kind of information modeling, a conventional glossary is expanded to
include additional information. The glossary can be derived automatically from this type of
diagram. Thus, the use of information models also fulfils the purpose of a glossary—the
definition of terms that should be used uniformly throughout the system development.

Another use for the modeling of information structures is the precise specification of
requirements. All information modeled in the structures should be considered as
requirements (see also Section 1.3). The statement above, about which customer data is
relevant for a CRM system, can also be interpreted as "data that the CRM system must
manage for a customer".

3.2 Modeling information structures

This section looks at the requirements in the information structure view using UML class
diagrams. There are several approaches for modeling information structures. One diagram
that is related to this kind of modeling is the ER (entity-relationship) diagram [Chen1976].
Today, itis commonly used for modeling database schemas. The relationship with the class
diagram consists in the transition from a (logical) information model in requirements
engineering to a physical database schema. The information model is a good basis for
designing database schemas, that is, the storage of business data.
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The great advantage in the use of UML class diagrams lies in the UML integration with other
diagram types that are used in other views in requirements modeling (see Section 1.5). This
can be necessary to achieve the links required for a formally correct, complete, and
understandable requirements model—for example, the link between activity diagrams and
the information model.

This integration also determines the approach for the creation of an information model
within the framework of requirements engineering. Usually, you will create such a model to
have a good basis for modeling other views. However, it quickly becomes clear where the
deficits lie in the information model. In this case, any deficiencies in diagrams or other views
because, for example, when the functions were defined, not all required technical
information was considered, are then identified. This change between the different
perspectives is not always easy but has great potential with respect to the correctness and
completeness of the modeled requirements.

3.3 Simple example

The figure below shows a simple example of a data diagram in the form of a UML class
diagram. It shows the relevant terms, the attributes, and the dependencies.

Contact

Legal residence
Company Person Address

-4 Ispoint of contact for Date of birth 1

Company name
Cormespondence address

Date of establishment 0.* 1| First name

Last name - 1

Department

Figure 9: Example of a class diagramm

The above class diagram consists of five classes: contact, company, person, address, and
department. It documents the essential properties of these classes in the form of
attributes—for example, the attribute "date of birth" of a person—and the dependencies
between these classes, such as that a person is a representative for a company or that a
company is made up of departments.

The meaning and use of the various modeling methods of class diagrams are considered in
detail in the following sections.
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3.4 Modeling classes, attributes, and data types

The central element of information structure diagrams modeled on the basis of UML class
diagrams are the class and the attributes of the class.

3.4.1 Classes

3.4.1.1 Objects versus classes

When information structure models are used in requirements modeling, two terms must be
differentiated: objects and classes. A "class" is a pattern or template which defines the
common properties of many objects. The objects are then referred to as instances of these
classes.

Sally Brown

Person Jim Wiener

Charly Green

Car belonging to Charly Green

Car Car1 belonging to Sally Brown

Car2 belonging to Sally Brown

Figure 10: Class vs. object

Figure 10 shows the classes person and car and on the right, some objects as instances of
these classes. For these objects, an important property of the objects is also shown: they are
unique and should therefore also have a unique identifier (for more information about
uniqueness, see Section 3.4.2). With the unique name in the figure above, the two cars
belonging to Sally Brown can be differentiated.
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3.4.1.2 Syntax and semantics

Class name

Figure 11: A class

The simple representation of a class consists of a rectangle with the class name. This is
expanded in Section 3.4.2 with the representation of attributes.

As mentioned above, a class represents the template for a plurality of objects of this class
which are referenced in the requirements. Therefore, in general, the name of a class is used
in the singular. When referring to a person, the class name "persons" would be incorrect as
this means multiple persons.

The statement that a class represents the template for a plurality of objects of this class is a
general statement for a class diagram. You can, however, formulate the data structure
perspective of a requirements model more easily with the class diagram: the terms that are
relevant in the domain in question appear as classes in the diagrams of this view. In other
words, the nouns that are used in the formulation of the requirements appear as classes.

With the distinction made above between an object and a class, the latter needs to be
clarified because the requirements (textual or graphical) are terms used to refer to any
object of that class.

Example: The system must display the data of a person
Assume that in an information model a class person exists. This requirement is to be interpreted
such that the data for each object of the class personis to be displayed.

This results in the first task of modeling the information model: identifying the required
classes from the objects used in the requirements.

3.4.1.3 Heuristics for identifying classes

One of the simplest approaches for identifying classes is to define a class for every nouniin
the requirements (or the current specifications). However, you will quickly find that this
approach provides a vast number of classes which then have to be processed further. Many
of the classes found only describe the properties of another class. These classes are then
added to this other class as class attributes (see Section 3.4.2). Another aspect of reducing
the vast number of classes is to classify synonyms or phrases out of context, for example.

Let us assume that the following nouns would have been identified in a first step: person,
age, car, gender, color, vehicle, man. In this list, there are only two terms that are worth
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modeling as classes (cf. [Mart1989], [ShMe1988]): person and vehicle. For the other terms,
the following applies:

=  Man: synonym for person

= Age: property of a person

= Car:synonym for vehicle

= Gender: property of a person
= Color: property of a vehicle
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With this selection, three assumptions were made that need to be confirmed in the context
of areal development project:

= The concept of person must be used consistently and not man.
= The concept vehicle must be used consistently and not car.
= The term color refers to the color of a vehicle.

For synonyms, the common language use of the project or a company is decisive—as long as
itis unique. This procedure allows a good first version of the information model. Further
heuristics that extend the approach presented are described in Sections 3.4.2.2 and 3.6.3.

Another way to find classes is to search directly for specific candidates in typical
formulations. These can be divided into three areas:

= Tangible or intangible objects
= Roles
= Functions

This procedure significantly reduces the set of all nouns.

3.4.1.4 Tangible and intangible objects

Tangible objects in the real world are relevant for the requirements as they are either
affected by the system under development or have a "representative" (e.g., a class) in the
system under development (or both cases can apply).

Examples:
person, car, door, book, leave application (which is not printed, so does not have to be tangible)
or club.

3.4.1.5 Processes

To support the system processes, additional and relevant information is often needed, such
as: delivery, order, call, assembly, or report. For example, the data of a delivery, such as the
date of receipt or the agent, may be technically relevant to the system.

Note that the term in the information model is not the function to be implemented by the
system. The information model describes the relevant information for the process—not the
process itself which is to be supported by the system (see also Chapter 4). This process is
generally denoted by a noun in combination with a verb in its normal form, rather than only
by a noun, as is the case in the information model.

Depending on the field of application, an order could be a useful class in the information
model. The receipt of an order could then be a supportive function of the system. It can be
used to derive, for example, the names of use cases (see Section 4.2): receive order, forward
order, and complete order.
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3.4.1.6 Roles

Similar to functions, roles of objects can be interesting for information structure models.
These roles are then defined as separate classes.

Examples are:
- Driver: a person in the role of the driver of a car
- Residence: the address of the first residence of a person

There is another alternative for modeling roles in the information model. More information
about this alternative can be found in Section 3.5.1 and Section 3.7.1.

3.4.1.7 Defining the meaning of terms

An important property of an information model is that the terms defined in the model are
placed in context (see Section 3.1). Together with the definition of the attributes, this means
that a large part of the meaning is generally already defined. If additional descriptions are
necessary, textual additions can be defined, which are then placed in a relationship with the
corresponding class.

In our system a bookdescribesan
object that can be borrowed by a
Author = ————— —— — — — customer.

Inventory number «refine»
Title

Book

Figure 12: Class and natural language definition

3.4.2 Attributes

Attributes are used to specify classes more precisely, which means that defining attributes
enriches the corresponding diagrams with additional semantics. This is very important in
requirements modeling.
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3.4.2.1 Syntax and semantics

Class name

Attribut1: Data type [0..*] = default value

Figure 13: Class with attribute

The attributes are defined within the scope of the class. The following components are
allowed (represented in Backus-Naur form):

[/1 Name [: type] [multiplicity]] [= default]

= Name: the name of the attribute, which is obligatory

= Data type: the data type of the attribute; this is optional and is described in Section
3.4.24

= Default: the value of the attribute set on creation of a new object of the class

» Multiplicity: can be used if the attribute can take on multiple values simultaneously
(e.g.: several first names); the same multiplicities are used as in the relationships (see
Section 3.5)

» Derived: the leading "/" indicates that the attribute value can be derived from other
values (e.g.: the age of a person can be derived from the date of birth)

The attributes specify domain-specific properties of a class that are relevant for the system
under development.

3.4.2.2 Heuristics for determining attributes

To distinguish between classes and attributes, check each noun which was found as a
potential class (see Section 3.4.1). In each case, consider whether the noun is merely a
property of another class. If so, this noun is defined as an attribute of this other class.

Attributes are often identified as such because of wording in written or spoken text.
Common types of formulations that indicate potential attributes of classes are the following:

Noun in combination with a genitive

Example:

- the date of the order

- the diameter of the circle
- the color of the car
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The names of the attributes and the corresponding class are already givenin the
formulations. No further interpretation of the formulation is required.

Sentence construction with: <class> has <attribute>

Example:

- a person has a date of birth

- an address has a postal code

- the process has a transition time of ...

This type of formulation is an indication of an attribute of a class or a relationship between
two classes. More information about the distinction between whether something is an
attribute of a class or a relationship between classes can be found in Section 3.4.2.3.

Adjective in combination with a noun

Example:

- afastcar

- alarge display

- a huge bank account
—-aredcar

- a black list

This type of formulation usually indicates a concrete instance of a class (car ¥ fast). We have
to determine which attribute of the class is meant (e.g., size of display = large) (see Figure 14).

Black list List List

Color = black Blacklist = no

Figure 14: Modeling variations for adjectives with nouns
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Sentence structures with: <class> is <attribute value>

Example:
If the person is an adult; if the application is approved; ...

In this case, only a value of an attribute is specified. Again, further analysis is necessary
because in the examples above, classes are compared with attribute values. However, the
values apply to attributes of the class and not to the class itself (e.g., approved is a value of
application status).

Differentiating objects

In addition to the formulations presented, attributes can also be derived from a required
property of objects in the object-oriented paradigm: objects always have to be unique in
their context.

This uniqueness must be achieved by using different values of the attributes of objects. At
any time, the combination of the attribute values must be different between objects of the
same class. Only then can the objects be uniquely distinguished for a user of the system.

Example:

Modeling the object Peter Schulz with only two attributes (first name, last name) may not be
sufficient to distinguish it from another person with the same name. If the class person also has
the date of birth as an attribute, its objects may be clearly distinguishable (i.e., another person
with the same name but born on a different day).

3.4.2.3 Class or attribute

The distinction between a class and an attribute is not always easy. If there is any doubt as to
whether an identified term should be represented in the information model as a class or an
attribute, then the term should first be modeled as a class. In contrast, if the term identified is
simple, unstructured data such as text, dates, numbers, or Boolean information, then the
term should be represented as an attribute in the information model.

For structured information, the following heuristic is helpful: as soon as a structured form of
this information belongs to more than one other object, it should be modeled as a separate
class.

The example in Figure 15 shows the difference for an address. Objects of the class address
can belong to multiple objects of the class person. These objects share an address. Changes
to an address affect all persons that are associated with that address. In contrast, the
addresses in the second part of the example are completely independent.
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Comespondence
Person address Adress

Date of birth [

-

City

First name lives at = Street

Sumame N 1| Zipcode
Person «dataType»

Adress

Correspondence address: Adress

Date of birth City

First name Street

Home address: Adress Zipcode

Sumame

Figure 15: Class or attribute

3.4.2.4 Information modeling for existing systems

Existing systems have a rich pool of resources that can be used to create an information
model. They help to identify not only classes and attributes but also relationships and
multiplicities.

Possible sources:

= Logical or technical information model (entity-relationship models)
= Interface specification
= Description of a data warehouse

On one hand, the challenge with this existing information is—as with any system
archeology—that the information has to be validated and checked for accuracy. On the
other hand, we should avoid including technical implementation attributes (technical
identifiers and optimizations) in an information model.

3.4.3 Data types

Requirements modeling with UML class diagrams distinguishes between three kinds of data
types: primitive data types, structured data types, and enumerations.

3.4.3.1 Syntax and semantics

The syntax for data types is similar to the syntax for classes. The name is mandatory. Further
information can be added to determine the allowable set of values of attributes.
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«primitive » «dataType» «enumeration»
Integer Data type Enumeration

at Lit1
a2 Lit2

Figure 16: Examples of data types

Primitive Types: unstructured data types
The primitive data types are unstructured and thus the simplest data types. They represent
simple data types such as a number, Boolean value, string, etc.

UML has a number of pre-defined primitive data types:

= Boolean: a Boolean valuge, can be TRUE or FALSE
= Integer: a whole number

* Float: a floating point number

= Character: a single character

= String: a sequence of characters

Depending on the application, it may be useful to specify more primitive data types, that s,
to define data types that do not require more in-depth definition.

Example:
String50. It is clear, without further description, that a string of length 50 is meant.

Structured data types

This kind of data type allows the definition of structures, that is, the definition of complex
data types that are composed of more simple data types. These are always very specific to
a certain application area. UML specifies only the mechanism for defining such data types
and therefore does not contain any concrete data types. Figure 17 shows several examples.

«dataType» «dataType» «dataType» Information
Date Time Period
Date received: Date
Year: int Hour: int Starting point: Time| Time received: Time
Month: int Minute: int End point: Time Valid until: Period
Day: int Second: int

Figure 17: Example for the modeling and use of data types

As the example in Figure 17 shows, these data types can be defined hierarchically. The end
point of the hierarchical definition is primitive data types or enumerations.
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Enumerations

If the domain of an attribute can be specified by a denumerable list of acceptable values,
this data type can be defined as an enumeration. Figure 18 shows two examples of the
definition of an enumeration type.

«enumeration» «enumeration» Application
Colour Status
Processing status: Status
green created
grin released
yellow rejected

Figure 18: Enumerations

The above example is a typical case of the use of an enumeration: the definition of a status
(for an application). However, the definition of this data type is redundant when a state
machine for the class "application" is available (see also Section 0). Therefore, only one of
the two should be included in a requirements model.

3.4.3.2 Heuristics for determining data types

When creating an information model during requirements engineering, we have to decide
whether it is useful to model the data types of attributes of a class at this point in the project.
The advice here is to model a data type immediately (preferably a primitive data type).

During further modeling, this can be redefined or refined into a more complex data type, or
even a stand-alone class as required. If necessary, the data type can be specified in more
detail by textual requirements.

The next question would then be to identify more information about the data type. For
enumerations, the answer is obvious: we identify the possible values of the attribute and list
them in the enumeration. For structured data types, the necessary information is found in
the domain of the application. This is similar to the question for identifying the necessary
attributes of a class (see Section 3.4.2).

3.4.4 Recommendations for modeling practice

3.4.4.1 Modeling tip: attribute constraints and textual
requirements

If the UML options are insufficient or the results are not "easy to understand", we can add
textual requirements.
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Person

IAge If a person is a client, the birth date must
Daqce of bitth [0..1] f&= — — — — — - be available and the person must be
Client- boolean” «refines» olderthan 16 years.

Surmame
First name

Figure 19: Modeling attribute constraints

3.4.4.2 Modeling tip: views of things

In the language of project stakeholders, a term is often used implicitly for several things or
views of one thing (homonym). For example, the request may be used as a homonym for: the
empty paper form, the completed document, and the signed document or the data in the
system. The diagram must clearly state which meaning the modeled terms have.
Stereotypes may help to clarify the situation.

3.4.4.3 Modeling tip: length vs. number of strings

When attributes of a class which contain text are defined (e.g., a person's name), then the
question of the maximum length of the string arises. Multiplicity is often misused in this case.
According to UML, first name:string[20] means there are 20 first names of the type string.
This does not define a string of length 20. We can resolve this ambiguity problem in UML by
defining a special data type.

3.4.4.4 Outlook: specification with OCL

For the exact definition of constraints, OCL (Object Constraint Language) from OMG
[OMG2012] provides the possibility of a more formal specification which, however, is not
always easy to understand. The condition that a customer must be 16 years of age or older
could be formulated as an OCL constraint as follows:

context Person inv: self.Client=true implies self.age >= 16

3.5 Modeling relationships

A key component of an information model is the relationships. They are represented as a
connection between classes and express how (i.e., with what meaning) the objects of the
specific classes are related to each other. The most commonly used relationships in the
modeling of requirements are simple relationships (binary associations), aggregations, and
compositions.
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3.5.1 Simple relationships (binary associations)

Simple relationships are drawn between classes and describe the relationship which two
objects have to each other. The two objects can thereby be instances of two different
classes or of the same class.

In addition to simple relationships, UML provides n-ary relationships which connect multiple
objects. However, these are not discussed further in this document.

3.5.1.1 Syntax and semantics

Binary associations are modeled as a line between the corresponding classes. In order to
give this line a meaning, additional information is added. Figure 20 considers the classes
person and address. The model should state that a person has exactly one address assigned
where they live and also exactly one other address to which correspondence should be sent.
An address can be assigned to more than one person as the correspondence address or

residence.
Correspondence
Person address Address
Date of birth * 1
First name lives at p=
Surname * 1

Figure 20: Example of modeling simple relationships

= Name: Specifies the name (meaning/semantics) of the association in a verb phrase

» Reading direction: Direction in which the name is to be read

» Multiplicity: Is listed at each end of the association and indicates how many objects
the other object may or must be related to

* Role: Refers to the role played by the object to which the role is attached with respect
to the other object

To identify this additional information for relationships, it is helpful to imagine the objects,
especially when determining multiplicities.

:F“E Requirements Modeling | Handbook | © IREB 45 | 133



Correspondence

address
Mary: Person New York: Address
lives at =
lives at
Freddy: Person Chicago: Address
Correspondence
address

Figure 21: Relationships of the objects

In addition to the requirements contained in the information model, associations are often
the basis for deriving functional requirements.

Example: Requirement without the use of associations
Show address

A functionality, as in the example "Show address" above, which refers to only one object
("Address") without considering its relationship to other objects, is often incomplete.
Relationships are very useful for defining the context precisely and thus reducing the set of
objects to the desired/required quantity.

Example: Requirement with the use of associations
Show the correspondence address of the person who is the contact for the company

Associations offer the opportunity to move through the information model. This ability to
navigate through the information model also shows the importance of the unique name for
the associations between classes, especially when multiple relationships exist between two
classes. For this purpose, we refer to either the name of the association or a role at the end
of the relationship. When formulating requirements, role names can be used instead of the
class names (see the example and Figure 9).

For a requirements engineer, multiplicities are an important tool for verifying the details of
the quantifiers in the requirements:

Examples:
- Requirement 1: Show the person
- Requirement 2: For this person, show the company for which it is the contact person
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The formulation of requirement 2 seems to assume that there is exactly one legal entity. The
multiplicities in the diagram show a different picture.

For a requirements engineer, the following questions regarding the requirements and the
association arise: Is the multiplicity of the association correct? If it is incorrect, it must be
changed. If itis correct, then the following questions must be answered:

=  What should happen if a legal entity is assigned?

=  What should happen if more than one legal entity is assigned? How is the one you
want to display selected (e.g., the one with the youngest or oldest date of
incorporation)?

3.5.1.2 Heuristic for determining simple relationships

Linguistic Formulations

Relationships between classes can be discovered by certain statements in the natural
language. Statements such as "A departmental manager manages a department" can be
expressed directly in the diagram. Depending on the formulation of such statements, they
are drawn in different ways in a class diagram:

Verbs -  binary association, association name, read direction

"Head of department manages department" or "Departments are managed by departmental
heads".

Verbs in an active or passive formulation indicate the meaning of the association. In a model,
verbs in active form are preferred. When requirements are the basis for the determination,
then verbs (= functionality) must be critically queried.

Example:
Employee orders product

In the information model, this would only be included as an association if the information
about which employee has ordered which product is relevant.

Nouns > role
"Employee is head of a department”

If two concepts are connected with a noun, then it is usually a role that sets one of the two
terms over the other. If the role contains properties, then this role could also be modeled as a
separate class (see Section 3.7.1)

Quantifiers >  multiplicity
"A natural person can be a contact for any number of legal entities”.

"For a legal entity, exactly one natural person is the contact”.
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Quantifiers specify the associations found and are absolutely necessary for both ends of the
relationship. A statement mentioning "a/one" should always be questioned with "exactly
one?".

Classes without further reference in the class diagram

Each class in the information model must be in a relationship with at least one other class (via
a simple relationship, generalization, an aggregation, or a composition). If classes exist that
are not in a relationship with any other class, this gap needs to be closed. This means that the
classes and the relationships between them form a network.

3.5.2 Aggregation and composition

For certain types of relationships (more precisely, the semantics of relationships), UML has
specific notation elements.

3.5.2.1 Syntax and semantics

In UML, a "part/whole" relationship can be represented with a line on which a diamond shape
is located at the end with the class that represents the whole.

Company Route

s 1 1 *

Department Starting Point Destination Place of Interest

Figure 22: Example for the modeling of aggregations and compositions

This is primarily a relief when modeling and reading the diagrams because the importance of
the association is clear immediately. A special form of aggregation is the composition. Here,
the part/whole connection is particularly strong. It is used to specify that deleting the whole
also deletes the parts.

3.5.2.2 Heuristics for determining aggregations

Because aggregations and compositions are considered as specific types of a relationship,
the heuristics for identifying relationships (see Section 3.5.1) can also be used to identify
aggregations and compositions. From the perspective of the specific meaning of such
associations, aggregations and compositions are indicated by keywords that relate to
statements about part/whole dependencies.
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Verbs
Typical verbs that indicate aggregation or composition relationships are:

= consists of
= iscomposed by

= contains

= results

= has
Example:

"A company consists of departments

Nouns

Aggregations and compositions can also be identified via role formulations. Depending on
the meaning of the relationship, these are:

= part
= whole
= component

Example:
"A department is part of a company"

3.5.3 Association classes

3.5.3.1 Syntax und semantics

A mixture of association and class is the so called association class. By using association
classes, it is possible to allocate properities directly to concrete associations between
classes.

lives p

Person Address

I
|
|
|
|
N

Management Information

Created on
Created from

Figure 23: Simple Example of modeling management information with association classes
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In the example shown above the link between an object of the typ "Person” and a particular
object of the typ “Address” has been extended by an object of the type “Management
Information”. The object of the type “Management Information” enriches the association by
adding the information when and who has created the corresponding relationship. In this
case, to any relationship between objects of the type "Person” and “Address” an additional
object exists holding the corresponding management information. Due to the semantics of
association classes no additional multiplicities are modeled.

The modeling of assocation classes is controversly discussed as novice user interpret such
models often in a wrong way. In doubt and in order to validate the interpretation such
diagrams can also be modeled with normal classes and associations between them.

Person T Product Person Product

1 1
Order Order

Date 0.*] Date 0.x

Figure 24: Transformation of modeling of association classes by using “normal® classes

The example at the right hand side in the figure above is sometimes misinterpreted as: A
person can order several products when placing an order. For a better understanding Figure
25 shows a valid example for the instantiation of the class diagram displayed at the left hand
side of Figure 24.

0O1: Order

P1: Person Prl: Product

—

02: Order

’
’
7

03: Order

P2: Person T Pr2: Product
I

04: Order

Figure 25: Exaple for a valid instantiation of the class diagram in Figure 24 (left hand side)
The example shown above can be extended concerning the fact that a person can order

more than one items of a particular product. For instance, by adding an attribute Quantity to
the class Order.
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3.5.83.2 Heuristics for identifying association classes

Association classes attribute associations. Linguistically, all formulations that refer to
properties concerning an association are interesting.

Example:
How long / since when a person lives at an address.
When / how often a person has visited a place.

3.5.4 Practical advice for information modeling

3.5.4.1 Modeling tip: constraints of relationships and
textual requirements

If the UML options are insufficient or the results are not "easy to understand", then we should
use textual requirements in addition to the model.

+Purchaser
Person Order

1 0.*
1.0 NS

~
~

«refines»
~
~

For each purchase a
delivery address must
exist.

+Delivery address | 0..1

Address

Figure 26: Modeling constraints of relationships

3.5.4.2 Modeling tip: attribute or association

Two classes that are connected to each other with a 1:1 or 0..1 relationship can occur but this
situation is rather unusual. In this case, we should question whether one of the two classes
can be converted into an attribute of the other class.

3.5.4.3 Modeling tip: navigability vs. reading direction

When modeling classes, there are two representations of relationships that can be
interpreted as "directions" with a very different meaning (not counting the triangle of the
generalization that could also be misread as a direction arrow). One representation is the
reading direction of the name of the association (i.e., the small arrowhead next to a verb)
(see Section 3.5.1), as shown in the upper part of the following figure.
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Person lives at p= Adress

lives at
Person Adress

Figure 27: Reading direction vs. navigability

The other representation is the navigability as shown at the bottom of the figure above. The
latter states that for a person, we can get the address at which he resides but not vice versa.
This navigability is important in the realization. In requirements engineering, however, it plays
a minor role.

3.5.4.4 Modeling tip: different interpretation of
multiplicities (versioning, historizing, dynamics)

Multiplicities appear to be defined very precisely. However, they can lead to discussions or
different interpretations.

Person Identity Card

Figure 28: Unclear multiplicities

0..* can be interpreted as:

= *:Person has (over time) many identity cards (expired, lost)

= 0:does not need an identity card (does not have one or has lost it)

= 0: Apersonalways has an identity card but the person is created first and then the
card. Therefore, there is a period before the identity card is created when a person
exists without an identity card.

An information model always shows a static and consistent structure of the information.
Accordingly, there is no intention to resolve intermediate states of the information. Other
temporal aspects, such as versioning or history, may well be relevant and modeled
accordingly. Figure 29 shows a possible modeling of a simple history.

Person +valid identity card Identity Card

1 1

+expired identity card

1 0.*

Figure 29: Resolution of unknown multiplicities
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3.5.4.5 Outlook: specification with OCL

For the exact definition of constraints, OCL (Object Constraint Language) from OMG
[OMG2012] provides the possibility of a more formal specification which, however, is not
easily understandable. The condition that each person in the role of purchaser must have a
delivery address could, for example, be expressed by the following OCL constraint:

context order

inv:self.purchaser->notEmpty(J)implies self.Purchaser.DeliveryAddress-

>notEmpty()

3.6 Modeling generalizations and specializations

3.6.1 Syntax and semantics

The common properties and relationships of multiple classes can be summarized by a
generalization. Models can thus be simplified. The corresponding classes are connected with
a line with an arrowhead at one end. The class that the arrowhead points to represents the
generalized concept. If the class has no objects (i.e., no instances of this class), thenitis
called an abstract class. To illustrate this in the diagram, the name of an abstract class is
displayed in italics. Figure 30 shows a simple example for the modeling of a generalization.

Client

[\

Company Person

Figure 30: Example for the modeling of a generalization

Generalized terms should be used with caution, as there is a risk of misunderstandings.
Abstract and non-abstract generalizations have a different meaning for requirements.

In this context, abstract generalizations are—in contrast to non-abstract generalizations—
representative of each of their specializations.

The system must provide the user with the ability to create clients <abstract generalization>
This corresponds to:

1. The system must provide the user with the ability to create companies
<Specialization1>
2. The system must provide the user with the ability to create persons <Specialization 2>
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When "Client" is not an abstract class (i.e., it is not italicized), the above requirements allow
the creation of a client object (without specifying whether the client is a company or a
person).

3.6.2 Generalization sets and their constraints

Generalization sets offer the option of combining different aspects of a generalization to
form groups of subtypes. Figure 31 models two generalization sets (contact kind and contact
type) with associated constraints.

Contact

Contact kind {incomplete, overlapping} jx [fContact type {complete, disoint}
Bank Interested Client Supplier Person Company
Party

Figure 31: Example for modeling generalization sets and constraints

In UML, the specification of properties of such a generalization set is annotated by
constraints in curly braces.

Typical constraints are:

= Incomplete: The modeled subtypes are not necessarily complete. For example,
manufacturer could be added as a contact kind.

= Complete: The modeled subtypes are complete. No other contact types are possible.

= Disjoint: Aninstance can only be one of the subtypes. For example, a contact is either
a person or a company, but never both.

= Overlapping: An instance can belong to more than one subtype. For example, a
contact may be a customer and a supplier.

3.6.3 Heuristics for identifying generalizations

3.6.3.1 Linguistic formulation

As in the other areas, generalizations and specializations can also be identified by specific
linguistic formulations.

"The dog is a kind of animal"; "A kind of animal is a dog"; "The boss is a specialemployee”;
"Typical payment methods are bank transfer or billing".

:F“E Requirements Modeling | Handbook | © IREB 54 | 133



3.6.3.2 Uniformity

Generalized classes can be created for classes that have many of the same attributes and
possibly also have the same relationships to other classes. This can lead to generalized class
names that are not used in the domain.

3.6.4 Recommendations for modeling practice

If all specializations have no attributes, modeling via a property "type" or "kind" is possible.

POI POI «enumeration»
POI Type
latitude latitude
longitude longitude Hotel
Type: POI Type Parking Lot
Restaurant

gl

Hotel Parking Lot Restaurant

Figure 32: Empty specializations

The choice is determined by the domain experts. If the names of the specializations are
anchored in the language of the stakeholders as separate terms, then these should be
modeled as independent concepts. If they play a rather subordinate role, an enumeration is
preferred.

3.7 Other modeling concepts

3.7.1 Typical concepts and patterns of information
structure modeling

In information models, similar structures are encountered again and again. Possible solutions
for such structures are called patterns. The main analysis patterns for information models
are:

= |tem-item description, for example, for a book and specific copy of a book; product
and article; invoice and invoice item [CoNM1996]

» Party (also known as a role pattern) [Fowl1996]

= Coordination for, e.g. Processes [Balz2011]

= Composite, e.g., for organization or file system [GaJV1996]
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3.7.2 Derived associations

Derived associations are associations that can be derived from existing associations and are
therefore redundant. Similar to derived attributes, these associations require a derivation
rule. In the simplest case, this is supplemented textually and can simplify the formulation of
the requirements because the derivation rule only has to be defined once. An example is
shown in Figure 33.

Address +Delivery address Person ordered B Article

«q /isdelivered to

Figure 33: Derived associations

3.7.3 Scope of generalization diagrams

Generalizations can quickly form whole trees with multiple levels. Once such a tree consists
of more than 7 + 2 elements, it should be maintained in a separate diagram.

3.8 Further reading
Creating information models

= Martin, J.: Information Engineering, Book | - Introduction. Prentice Hall, Englewood
Cliffs, 19889.

= Shlaer, S.; Mellor, S.: Object-Oriented Systems Analysis — Modeling the World in Data.
Prentice Hall, Englewood Cliffs 1988.

= Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley 2005.

= DeMarco, T.: Structured Analysis and System Specification, Yourdon Press, Prentice
Hall, 1979.

= Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference
Manual, Addison Wesley, Reading, MA 2004.

Analysis patterns for information models

= Coad, P.; North, D.; Mayfield, M.: Object Models: Strategies, Patterns, and
Applications, Prentice Hall, 1996.

= Fowler, F.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, MA
1996.

= Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Pattern - Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

= Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley 2005.
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4 Dynamic views

Program = data + algorithms! With this simple statement, Nicholas Wirth has summarized a
complex fact in a memorable way. Applying this equation to requirements, in this chapter we
will focus on the desired or required functionality of a system and its behavior (following the
description of information models in Chapter 3).

4.1 Dynamic views of requirements modeling

In contrast to the information models, which can essentially be expressed by one diagram
type (except for syntactic variants), the dynamic views offer a lot of different abstraction
criteria for specifying different aspects of the functionality. This chapter looks at different
types of dynamic views in requirements modeling which are summarized in the following
table (the last one will be addressed in Chapter 5 of this document).

Use case view Decomposition of the functionality of the entire system from a
user perspective into processes triggered externally or by time
(or interactions or sequences of functions), each leading to a
specific added business value for one or more actors in the
system context; presented in the form of use case diagrams
including textual use case specifications for each use case.

Control flow-oriented Specification of sequences of required functions of a system,

view whereby the emphasis is on the sequence of execution. This view
is mainly represented by UML activity diagrams with explanatory
activity descriptions.

Data flow-oriented Specification of the required functions of a system, including

view input/output data dependencies; represented classically by data
flow diagrams with explanatory descriptions of the functions and
data flows between the functions. UML activity diagrams with
appropriate extensions can also be used.

State-oriented view Specification of the event-driven behavior of a system, including
states of the system, events, and conditions for state transitions.

Represented by state transition diagrams or Statecharts with
explanatory descriptions of states, functions, conditions, and
events that trigger state transitions.
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Scenario view Specification of interactions between actors (people, systems) in
the system context and the system under development (SuD)
that lead to an added business value for one or more actors.
Scenario modeling can be done by way of example (e.g., to
support the elicitation of requirements) or with a claim to
completeness, i.e., all the scenarios which are to be supported by
the SuD are modeled (see Chapter 5).

Table 1: Dynamic views in requirements modeling and their meaning

4.2 Use case modeling

Use cases provide a method for systematically describing functions within the defined
scope from a user perspective. This section introduces the basic elements of use case
models and focuses on a deeper understanding of how to identify and specify use cases.

4.2.1 Purpose

There are many approaches available for breaking the functionality of a whole complex
system down into its parts. The approach of breaking down the overall system into
processes which provide added value for persons or systems outside of the system has
been applied successfully and in many cases (cf. [McPal1984], [JCJO1992], [HaCa1993],
[Cohn2002]). A wide variety of concepts and terms is used for such processes, for example
EPC (Event-driven process chain), use case, or user story in agile practices.

We consider use case models as a representative of these models. Use case models consist
of use case diagrams with associated textual use case specifications. The use case
diagrams provide a graphical overview of the required processes of the system and their
relationships to actors in the system context. A use case specification specifies each use
case in detail by, for example, describing the possible activities of the use case, its
processing logic, and preconditions and postconditions of the execution of the use case. The
specification of use cases is essentially textual—for example, via use case templates such as
recommended in [Cock2000].

The main purpose of use case models is to decompose a complex system into such parts
that can be specified afterwards in detail as independently as possible from each other:
divide and rule. Since the processes (= use cases) can be derived from the context, this
decomposition is neutral with respect to the (existing or planned) inner structure of the
system. This means that it does not take into account any internal organizational boundaries
or software or hardware limitations of the system under development, focusing instead on
the external perspective.
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4.2.2 Model elements for use case diagrams

Figure 31 shows the main model elements of use case diagrams, as used in UML. They are
used to express the system boundary, actors, use cases, and the relationships between
actors and use cases. With regard to the concept of actors, note that actors are always
stakeholders in terms of requirements engineering but many stakeholders are not actors
because they will never work with the system in operation, even if they want to have a say
about the behavior of the system (see [Cock2000]).

Besides the stick figures, various graphical stereotype symbols can be used to express
actors. Among others, the use of a clock symbol for time-triggered processes has proven of
value, as shown in Figure 32.

Note: by drawing the system boundary, is it easy to distinguish clearly between "inside" and
"outside" in use case diagrams. Because of this and since actors are always outside the
boundary, it is easy to recognize actors with any kind of representation even without the
stereotype << actor >>. Many modeling tools allow you to display or hide the stereotype
names like << actor >>. Figure 33 makes use of that simplified notation.

Notation Name Meaning

Name 1
System boundary The .rectangle depicts the scope of the system. Actors are
outside the scope. Use cases are inside the scope.

% An actor can be a person, a company or organization, or a
Name Actor software or system element (hardware, software or both).
«actor»
Alternati
Name (Alternative)

Functionality of the system, needed by an actor that provides

Vs e value to the actor. The name should contain a verb, as it
describes a functionality, and an object, to which the
functionality refers, e.g., "monitor velocity".

Association The (unnamed) line between the actor and the use case
indicates that this actor interacts with this use case.

Figure 34: Model elements of use case diagrams

On the right-hand side, Figure 35 shows an example of a use case diagram with these four
basic elements—the system boundary (scope), actors, use cases, and associations.
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Figure 35: Example of a context diagram (left) and the corresponding use case diagram (right)

4.2.3 Use case diagrams and context diagrams

These two diagram types have similar content but different priorities. Both define a name for
the system under development and the system boundary (i.e., the distinction between the
scope and context) but with different precision.

The focus of the context diagram is the precise functional definition of the interfaces to all
neighboring systems. Good context diagrams contain (in addition to the system as a black
box) all neighboring systems (people, IT systems, devices) that act as a source or sink for
information of the system under development.

If a context diagram exists in which all neighboring systems and actors of the system under
development are shown, it may be sufficient to create a use case diagram that only contains
actors which trigger the execution of use cases.

These actors are called process-triggering actors; they justify the existence of use cases. In
other words, without the respective actor there would be no demand for this use case.
Therefore, if a context diagram exists, further actors that are involved in the use case (i.e.,
during the execution of the process after the trigger by an actor) are not necessarily drawn in
the use case diagram. This would only increase the complexity of the use case diagram and
detract attention from the fact that the use case view mainly serves to decompose the
overall functionality of a system into disjoint processes from a user perspective.
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Figure 36: (a) Use case diagram with all neighboring systems, (b) Use case diagram with inputs

and outputs

Recommendation 1: Use the strength of both diagram types to obtain on one hand an
interface description that is as complete as possible (using the context diagram), and on the
other hand, to achieve a rough outline of the functionality from a user perspective (in the
form of use cases) that provides a good overview of the required overall functionality and
allows a separate, additional specification of each use case.

Recommendation 2: If you only model use case diagrams without a context diagram (e.g.,
because the tool used does not support explicit context diagrams and the context diagram
should not be expressed with a UML class diagram), then all neighboring systems of the
system should be included in the use case diagrams. The additional use of graphical layout
options allows an easy distinction between actors triggering use cases and other affected
neighboring systems (e.g., by arranging the actors on the left and the other neighboring
systems on the right). However, such an "extended use case diagram" still does not have the
expressive power and precision of a context diagram because in the use case diagrams, the
identifiers of the inputs and outputs are missing.
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These could be written next to the directed associations between actors and use cases (see
Figure 36, b). If we do this, however, the diagram becomes overcrowded and is more difficult
to understand. This weakens the major purpose of the use case model.

4.2.4 Finding use cases

In order to find the relevant use cases of the system, itis often useful to focus first on the
triggers for possible use cases. Triggers of use cases are events in the system context to
which the system under development should adequately respond by executing a process
which provides added business value to one or more actors in the system context.
[McPal1984] divides these triggers into two categories:

= External triggers: An actor (e.g., a neighboring system) wants to trigger a process in
our system. Our system will notice this when data coming from the neighboring
system crosses the system boundary.

For example, "A guest wants a room in a hotel system". Once the request is received (i.e., the
corresponding event in the system context happens), the hotel system should offer a suitable
room to the guest.

= Time triggers: It is time to execute a process in our system, for example, at specific
times or on specific calendar days. By using time events to start a process, there is no
need for data to cross the system boundary. It is only necessary that the specified
point in time is reached.

For example, in the hotel system: "It is 6pm and thus time to cancel all no-shows and make the
rooms available for sale again." Monitoring of internal system resources is also considered as a
time event, for example "It is time to reprint our hotel catalog."

4.2.4.1 Continuity of processes from system boundary to
system boundary

Each use case should be modeled in a way that the process—once triggered—is considered
until its end. The process of a use case should not be interrupted within the system (e.g., at
already known software component or organizational boundaries within the system).

The granularity of a use case is therefore determined by the complete reaction of the
system under development to the trigger from the system context, that is, the primary
actors get their added business value after the complete execution of a use case.
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4.2.4.2 Pragmatic rules for the granularity of use cases:
the 80-20 rule

During use case modeling, the question of adequate granularity for use cases is often raised.
In which situations should different use cases be merged into one use case? A strong
indication for merging use cases is the criterion regarding whether all processes provide the
same added business value.

In large and complex systems, it makes sense to analyze the various use cases. In the case of
two use cases having 80% identical processes and similar added business values (e.g., when
the processes are nearly identical but are executed with different data), only one use case
should be modeled for both processes and the differences between the processes should be
documented in the use case specification (see Section 4.2.5).

However, in the case of two use cases having only 20% in common or if many different
process steps are needed in the use case description, then separate use cases should be
modeled. In the case of a "similarity" of 50%, a decision is often difficult. Ultimately, the
similar added business value should be the determining factor for the decision about
whether to merge multiple use cases.

4.2.5 Specifying use cases

The popularity of use cases can be explained by the fact that Ivar Jacobson has given the
natural language back to the stakeholders for talking about their requirements. He proposed
describing the desired process of a use case in natural language. UML does not make any
suggestions about the style of use case descriptions. Over the years, many proposals have
been made to resolve the weaknesses of purely natural language process descriptions. In
particular, [Cock2000] suggests different levels of abstraction of use case descriptions for
different groups of readers.

The textual specification of a use case should document the essential inputs and outputs
(i.e., data, see also Chapter 3) which are intentionally not shown in the use case diagram.

Detailed textual use case specifications should also describe at least the main flow of control
and, if applicable, alternative paths from the perspective of the primary actor (i.e., main and
alternative scenarios, see also Section 5.2). Furthermore, they should also specify
preconditions and postconditions of the use case execution, which can typically be
characterized by states and state transitions (see Section 0). In addition, possible exception
events and associated exception scenarios should be documented (see also Section 5.2).
Table 2 shows an example of a template for the detailed textual specification of a use case.

:F“E Requirements Modeling | Handbook | © IREB 63 | 133



ID Unique identifier of the use case in the development project or

program
Name Name of the use case in the model (this name is shown in the use case
diagram)
Trigger Event that triggers the execution of the use case
Preconditions Preconditions that must be fulfilled before execution of the use case

Postconditions Set of postconditions that are fulfilled after successful execution of
the use case

Input data Input data of the use case
Output data Output data of the use case
Result Result of the use caseg, i.e., the added business value which is provided

to the actors after execution of the use case

Primary actor Actor who receives the significant part of the added value of the use
case

Further actors Actors who are involved in the execution of the use case

Main scenario Normal sequence of activities (execution flow in 70% of all cases, for

example). See also Section 5.5.1.

Alternative Set of alternative activities. Each alternative process also leads to a

scenarios successful execution of the use case (e.g., in 30% of cases). See also
Section 5.5.2.1.

Exception Set of exception scenarios. These scenarios are executed when an

scenarios exceptional situation occurs in the use case process. These scenarios
ensure a controlled error and exception handling. See also Section
55.25.

Table 2: Example of a template for textual specification of use cases

4.2.6 Structuring Use Cases

UML provides three additional means of expression for structuring the use cases of a
system. Figure 37 shows the notations for these three UML elements and briefly outlines
their meaning.
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Recommendation: Although these structuring elements do exist in the syntax of UML, you
should use them very carefully and not too often. Avoiding too many includes, extends, and
generalizations keeps the use case diagrams easy to understand and serving their purpose.
More complex relationships between use cases can often be expressed in a more
understandable and more precise way by using other diagram types, such as activity
diagrams (see Section 4.3.3). Both the inclusion of sub-processes (using "Include") and the
condition-dependent extension of use cases by sub-processes (using "Extend") can be
expressed more precisely in activity diagrams.

Name Include relationship Meaning

Notation
%\\idnclude» The included process is a reused sub-process of both use
T cases 1 and 2. The dashed arrow with the stereotype
<<include>> points from the including main process to the
% St included sub-process.
~ “<<include>>

Name Extend relationship
Notation The sub-process extends the use case under conditions that
lead to special or exeptional cases. The dashed arrow with the

- — :@@1@, Sub-process stereotype <<extend>> points from the extending sub-process
ension poin .
w["“‘“"’a"‘e] to the extended main process.

Name Generalization relationship
Specialization 1

Figure 37: Model elements for structuring use cases in use case diagrams

The main process is more precisely specified by
specialized processes. The specialization is, as in
information models, indicated by a hollow triangle at the
side of the generalized process.

When applying the model elements mentioned above to structure use cases of a system, the
following rules of thumb should be considered:

= Aninclude relationship can be used, for example, to explicitly document that several
use cases have an identical sub-process. Among other benefits, this saves extra work
during specification. Identical sub-processes can also be expressed by using
activities with the same name in the activity diagrams which document the process of
a use case. Doing this means that there are no additional elements in the use case
diagram. The use case diagram remains clear and legible.

= Anextend relationship can be used to document that an additional sub-process must
be executed within the "normal" process of a use case under a certain condition. It is
important that the extension point, that is, the condition under which the sub-process
is executed in addition, is formulated as precisely and understandably as possible.
Since this is often only possible in the use case specification (or in the corresponding
activity diagram), it is useful not to model such an extension explicitly in use case
diagrams.
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* By generalizing (or specializing) use cases, we can express that specific processes of
one or more use cases can be generalized. In most cases, such relationships are
modeled when a use case diagram has multiple use cases whose specific processes
can be abstracted to a more general level. Figure 37 shows how to model a
generalization.

Experience shows that generalizations are rarely used in use case diagrams since this
form of abstraction is rather a concept of information structure modeling in which,
for example, common attributes are abstracted by the creation of superclasses (see
Section 3). The description of more abstract (generalized) processes compared to
their specific (specialized) forms is usually difficult in the context of use case
modeling. This model element should therefore only be used after careful
consideration and with very specific intentions.

4.2.7 Packaging use cases

For systems with a large number of use cases, it is possible to increase the readability of the
use case model by using the following methods:

= Group the use cases according to their business subject
= Create a use case diagram for each group
» Locate the use cases of a group in the same part of the use case diagram

In UML, it is possible to package use cases (similar to packaging other elements of UML). The
criteria for packaging can be chosen freely. Usually, logically related use cases (e.g., use
cases with a similar added business value) or use cases relating to the same topic (e.g., all
use cases for warehouse management in an ERP system) are packaged. Packaging is mainly
used to improve handling and readability of a use case model with a large number of use
cases.

4.2.8 Summary

Use case models are usually a first step in systematically understanding and specifying the
overall complexity of a system (from the context diagram). A textual use case specification
is associated with each use case. This specification is usually sufficient to describe the
required functionality for simple processes.

For complex processes, this specification is the starting point for the creation of more
detailed diagrams that document the required behavior of the system precisely.

The corresponding diagram types are presented in the next sections.

4.3 Data flow-oriented and control flow-oriented modeling
of requirements

The core elements of the models from the dynamic view are the functions which should be
provided by the respective system. We identified these elements in the context diagram

and/or in the use case diagrams and subsequently specified them initially on a high level.
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We will now specify the elements in a more detailed and more precise way by using UML
activity diagrams and data flow diagrams (as used, for example, in the Structured Analysis
approach [DeMa1979]). Both diagram types will be introduced in this chapter.

The notation element for functions is (historically) different in the two diagram types (see
Figure 38) but the purpose of the two diagram types in requirements engineering is the
same: a decomposition of the required functionality into smaller functions and the
description of the interactions between the smaller functions to provide the functionality
required on the higher level.

Diagram type Notation Terms used

Data-Flow Diagram Process, Bubble

Activity Diagram Activity, Action

Figure 38: Modeling of functions in data flow and activity diagrams

There are two basic concepts for the interaction of functions - data and control flow, which
are motivated and explained in the next section. Here, the two perspectives for "control flow
thinking" (here: UML activity diagrams) and "data flow thinking" (here: data flow diagrams)
will be considered in more detail.

4.3.1 Purpose/historic overview

One of the earliest models in IT is the flow chart (e.g., according to DIN 66001). Flow charts
were used to create program flow diagrams to visualize program logic (at code level). They
showed functions (as boxes), alternatives and branches (as rhombuses), and jumps (with
anchor links). These diagrams supported programmers in understanding the structure of
large programs.

There are two basic approaches for specifying functions and their related interactions
further: data flow and control flow. Each of these approaches focuses on different aspects
and the approaches are justified and explained in this section. This Handbook describes only
one representative for each approach: UML activity diagrams for the "control flow thinking"
and data flow diagrams for the "data flow thinking."

—> Function 1

\ 4

Function 2

\ 4

Function 3 —>

Figure 39: Control flow between functions
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In the late 1970s, books and publications on "Structured Analysis" [GaSa1977, DeMa1979,
RoSc1977] were published. At this point, the focus of analysis approaches changed from
considering the control flow to modeling the data flow. Data flow diagrams also examine the
functions of the system (usually represented as circles, in some notations as rectangles with
rounded corners, or as rectangles).

Nevertheless, the (labeled) pointers between the function blocks have another meaning. The
pointers in the data flow diagrams represent inputs and outputs of functions, that is, the data
flow between the functions and not the control flow (see Figure 40).

Figure 40: Data flow between functions

In data flow-oriented views, all functions can be active simultaneously. The data flow
specifies only causal dependencies, meaning that a function can only work when its inputs
are available. However, in contrast to a control flow, no explicit sequence of the functions is
modeled.

With the introduction of UML in the late 1990s, the emphasis on control flow based on
activity diagrams was introduced again. UML activity diagrams are very suitable for
modeling process flows. They visualize the control flow between activities or actions of the
system. If the sequence of activities is sequential, the follow-on action can only start when
the preceding action is completed. Alternative control flows can be expressed using decision
points. Concurrent control flows can also be expressed.

In activity diagrams, functions are represented by boxes, control flows by arrows, and
decision points by diamonds.

To summarize: complex required functionality can be modeled either in a control flow-
oriented way (by using activity diagrams) or in a data flow-oriented way (by using data flow
diagrams). We should focus not on the choice between the two diagram types but rather on
the fundamental thinking in data flows or in control flows. Both concepts are useful and as
explained below, you can also represent data flow thinking in UML activity diagrams and
conversely, express relatively linear processes with data flow diagrams.
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Note: in some modeling approaches of the dynamic view, such as in Petri nets, the proposal is to
model the data flow and control flow together in the diagrams. This often leads to a higher
complexity in the diagrams, making them difficult to understand.

4.3.2 Requirements modeling with data flow diagrams (DFDs)

Data flow diagrams are often used to model requirements from a data flow-oriented
perspective. They model the functionality of the system under development using functions,
data stores, data/information flows, as well as sources and sinks.

4.3.2.1 Model elements of data flow diagrams

Figure 41 summarizes the main model elements of data flow diagrams.

Name Notation Meaning

Depicts persons, organizations of technical

Neighboring System/Actor :
(also Terminator, Source or Sink) Name systems, equipment, sensors, actuators from
' the system environment that are source of
sink for the information to / from the system
Nodes

Depicts a desired functionality in the

(Process, Function of the System)
system

Depicts moving data (inputs, outputs,
Data flow Name ) intermediate results). Not only data flows can be
depicted but also material flows or energy flows.

Depicts data at rest, i.e., information that is
stored for a certain period and that is not

Name . R .
Data store directly flowing between functions

Figure 41: Model elements of data flow diagrams

Figure 42 shows an example of a navigation system using the four elements that can be used
in data flow diagrams. It also provides further information on the semantics.
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Figure 42: Example of a data flow diagram (part)

Data flows (such as GPS signal or desired destination) represent data in motion.

Data stores (such as route parameters, traffic messages) represent data at rest. Data in
data stores can be created and updated by one set of functions and read (non-
destructively) by another set of functions. It is persistent data. The period for which the data
is to be stored is not specified.

The fourth element (the rectangles, in the example "sensor" and "driver") represents
neighboring systems of the system under development. In the Structured Analysis approach,
they are called terminators or sources and sinks, depending on whether they provide inputs
or receive outputs. A terminator may be both a source and a sink.

These terminators are usually listed completely in a context diagram (see Section 2.2). From
this perspective, the classical context diagram is a specific data flow diagram in which all
neighboring systems (or actors) and all input and all output data are modeled; however, the
functionality of the system under development is compressed into a single node. If the
neighboring systems (or actors) are already shown in the context diagram, then in the refined
data flow diagrams, often no terminators are shown and only the associated data flows at
the system boundary are modeled (see Section 4.3.6).

For data flow diagrams, the following fundamental rule is valid: Allinput and all output data
must be shown in the diagram.

The data flow specifies causal dependencies, which means that a function can only work
when its inputs are available. However, in contrast to a control flow, no explicit sequence of
the functions is modeled.

If there is a need to express the sequence of functions explicitly, data flow diagrams can be
supplemented by state transition diagrams. State transition diagrams use events and states
to express the sequence of functions.
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The collaboration between data flow diagrams and state transition diagrams can be
illustrated by the metaphor of a string puppet or marionette. The functions in the data flow
diagram correspond to parts of the puppet (such as arms, legs, head) which can be moved
freely and relatively independently of each other. A state machine corresponds to the
wooden cross with the strings to the moving puppet parts. The wooden cross makes a
(moving) connection between the moving parts of the puppet, whereby the puppetry can
restrict the possible movements of the puppet parts.

4.3.2.2 The relationship between data flow modeling and use
cases, control flow modeling, and information
structure modeling

The data flow-oriented modeling of requirements using data flow diagrams has a substantial
connection with the context diagram, the use case view, and the information structure view.
Use cases are a tool for systematically specifying the functions within a defined scope from
the user perspective and at a high level. During requirements engineering activities, these
functions need to be detailed and decomposed into more detailed system functions and
their dependencies.

The system functions of a use case, including data dependencies between the functions and
with actors (terminators), can be modeled using data flow diagrams. The more detailed
system functions can be identified during the functional analysis of the use case scenarios
(see also Section 5.5.3). The structure of the data, which is modeled in the data flow
diagrams as data flows ("data in motion") and as a data store ("data at rest"), is defined in the
diagrams of the information structure view (see Section 3.1).

4.3.3 Requirements modeling with activity diagrams (ADs)

UML activity diagrams can be used to model requirements from the control flow
perspective. Activity diagrams specify the required processing logic of use cases, system
functions, or processes that need to be delivered by the system under development so that
it fulfills its purpose during operation.
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4.3.3.1 Model elements of activity diagrams

Notation Name E Notation Name E Notation Name
1 1
1 1
Activity/ ! é Decision ! Name Object node
Action ' | (Object flow)

1 1
1 1

® Start node 1 ETEE ! H Pin
' (of alternative I
] I (Data flow)

@ End node ! control flows) !
1 1
1 1 .
1 I > Signal

l Control flow i ﬁ fork — Concurrency i transmitter
! v (Synchronization !
[condition] Condition i join bar) i j Event

: | receiver
1 1

X Terminator 1 | Mg | e Partitions |
: E:? (activity partitions) 1 gg s T
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Figure 43 summarizes the main model elements of activity diagrams.

Notation Name i Notation Name i Notation Name
1 1
1 1
Activity/ ! é Decision ! Name Object node
Action ' ' (Object flow)

1 1

® Start node i Merge i Pin
i (of alternative I O
] I (Data flow)

@ End node ! control flows) !
1 1
1 1 .
' i > Signal

l Coitrs. o E ﬁ fork Concurrency E transmitter
! L (Synchronization !
[condition] Condition ' Join bar) i Event

i | receiver
1 1

(%) Terminator 1 | "g" e Partitions :
| E:’% (activity partitions) | gg Time event
1 1
1 1

Figure 43: Model elements of activity diagrams

Activity diagrams document the control flow between activities or functions of the system.
The control flow starts at the start node and ends at the end node(s). The diagrams can be
used to model sequential processes, branches of the control flow (using decision points), and
concurrent processes (using synchronization bars). Concurrent processes contain activities
which can be processed independently and therefore potentially at the same time.

They are particularly important for the system analysis because in real systems, many things
can happen simultaneously or independently of each other and not strictly sequential.

For the exact syntax and semantics of the notation elements, please refer to advanced
books on UML, such as [RudB2004, BoRJ2005]. Figure 44 illustrates the use of the typical
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model elements of activity diagrams and the essential syntactic rules with an abstract
example.

Merge

Start node

-

—>

\C)/O*C

Alternative
control flows

End node

Decision

Independent/concurrent
activities/actions

Figure 44: Using the model elements of activity diagrams

4.3.3.2 Modeling object and data flows in activity diagrams
and their relationship to information structure
modeling

Activity diagrams also allow us to model object or data flows, as shown in Figure 45 and
Figure 46. This is done by inserting objects (see Figure 45) or parameters of the activities
(see Figure 46), as well as all accesses to data stores, are included in the diagram. In
contrast, activity diagrams do not define how much or how little data is displayed in the
diagrams.

Determine
Position

Calculate
? Route

Enter
Destination

<<datastore>>

<<datastore>> Traffic messages

Maps

Figure 45: Modeling object flows in activity diagrams

The example in Figure 45 shows that the activity "Calculate Route" requires an input from
the objects "Maps" and "Traffic messages". However, it does not show the main output (the
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route or several route suggestions). It also does not show any route parameters used (such
as "fastest route", "shortest route").

In contrast to data flow diagrams, where extreme importance is placed on the completeness
and consistency of the models, UML diagrams are supposed to be "useful" mainly for the
communication between the persons involved. The completeness of the specification can
be achieved with supplementary activity descriptions.

Determine
Position
Destination
Enter _
Destination ] o Traffic messages
Destination

Figure 46: Modeling flows in activity diagrams using pins

Position

The "pins" at the functions represent the inputs and outputs of the function. Thus,
relationships, such as that "Determine Position" creates a "Position" as output and "Calculate
Route" requires a "position" as input, can be represented graphically.

By using activity diagrams, the modeler can choose to include no data (objects) in the
diagram or to intentionally add some data (objects) to highlight certain aspects. It is
important to note that all inputs and outputs must be fully specified in the requirements
specification (at the latest in a textual specification of each function, see Section 4.3.5). The
structure of data or classes and their dependencies to each other should be modeled in the
information structure view (see Section 3.1).

4.3.3.3 Relationship of activity diagrams to use case and
scenario modeling

Activity diagrams are often used to specify the processing logic of use case scenarios in
detail (see Section 4.2.5). Activity diagrams are created to visualize the scenarios, which are
processes with activities and processing logic. As long as the diagram remains
understandable, the main scenario can be modeled jointly with the alternative scenarios and
the exception scenarios as part of the same diagram.

This is typically done by using decision points, where the control flow branches. Depending
on a condition, either the process logic of the main scenario or the process of the alternative
flow/exceptional flow is executed.

Figure 47 with an example of a control flow related to a use case. There are many decision
points where it is possible to switch between the scenarios. In this example, there is one
switching point before the activities "Enter destination address via keyboard" and "Say
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destination address". These activities belong to different scenarios. Exceptional scenarios
can be modeled using decision points. Figure 47 shows this at the last decision point. It
defines that in the case of the exception "Map information not available" the activities "Issue
error message" and "Shut down system" are performed.

ad Navigate to destination ) Navigation system Total control flow

./ of the use case
1. Switch on
[revigation, system
oaam el )

Control flow of the
main scenario

| Control flow of an
alternative scenario

[=
R

~
4. Enfer destination Miay
address via keyboard)| destination address
A\

\

4a2. terpret
voice entry

[Desti-
nation
not

found]

Control flow of the

) v Map information exeption scenario
[Map informatigh not available] "
available] ; . on the event "Map
; X = information not available"
i 5| dalculate 5b1. 18sue
| T u% length error messag
|
, v
[ 6| Display 5b2. Shut dowly
| rojjte | \gth system

| \

| \

| — ‘
Driver : o

Figure 47: Modeling the control flow of use cases using activity diagrams

To model exceptions which do not appear at a specific location in the control flow but in an
area of the control flow or during execution of the whole use case, signal inputs and outputs
and interruptible regions may be used (see Section 4.3.7).

For all UML diagrams, it is important that they are easy and understandable. In this case, they
should visualize the processing logic of a use case in a way that allows the reader to easily
recall the context. The recommendation is therefore to show only a few aspects (scenarios)
in one diagram. Further aspects (scenarios) can be shown in additional diagrams. It is also
possible to create a diagram with the main scenario and further diagrams for each
alternative scenario together with the main scenario. The textual description may contain
further details.
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4.3.4 Decomposing or combining functions

Both types of diagrams (data flow diagrams and activity diagrams) support the
decomposition of complex functions into simpler functions as well as the combination of
simpler functions to form more complex functions. In other words, data flow diagrams and
activity diagrams can represent hierarchies of functions (see Figure 48 and Figure 49).

This abstraction mechanism allows us to structure complex issues in order to keep them
understandable and manageable. Within the dynamic view of requirements modeling, this
hierarchy is a powerful tool for controlling the scope and complexity of the systems under
development.

In Figure 48, the complex function "Determine Destination" of a navigation system is
decomposed into five steps (which are not specified in the example diagram).

/\ Route
GPS Signal

Parameters
Determine /m /

Position Position /\

Suggested Route

Sensor

Calculate

Route

Desired
Destination

N

Choice of Destination

Driver

Determine
Destination

Traffic
Messages

1.2 Determine Destination

/\A —a
Choice of Destination \\

/\ Desired Destination
.a \/ Maps

Figure 48: Hierarchical decomposition and combination of functions in DFDs

In Figure 49, the complex activity B is decomposed into a detailed process consisting of five
activities. Conversely, the detail activities B1, B2a1, B2a2, B2b, and B3 can be combined to
form the aggregated activity B.
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Figure 49: Decomposition of a function in an activity diagram

In addition to content-based criteria (such as a technically strong relationship, which is often
manifested in finding a good name for the whole of the detail activities), very pragmatic
criteria are applied for decomposition or combination. One criterion is usually that the
diagram should fit on one page of a document. Furthermore, most methods recommend
modeling no more than 7 + 2 functions per diagram.

4.3.5 Textual function specifications

How "far" (level of detail) should the functions be decomposed in data flow diagrams or
activity diagrams? In other words: when should the decomposition of functions stop? A
simple heuristic rule is the length of the required function description. If the precise
specification of the requirements of a function needs more than a half-page description, the
function should be refined again to avoid natural language specifications that are too large.

If the diagram already expresses everything that needs to be stated, then you have probably
decomposed too far. Models are easier to understand and read if you do not model the last
one to two decomposition levels and instead, specify the functions in text form (for example,
on half a page). Itis also possible to refine a function (activity) by assigning a limited number
of three to seven simple, natural language requirements which specify the considered
function in detail.

Example: Textual description of the function "Determine Destination" (see Figure 48)
Function: determine destination

Input: destination selection (done by the user of the navigation system), map

Output: desired destination

The function should provide the user with four options for selecting a destination:
- By entering an address using the keyboard

- By entering an address using voice entry

- By selecting from a list of stored addresses

- If a map is displayed, by selecting a destination via the touchscreen
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For most users of these diagrams, the above-mentioned refinement level with a
specification on half a page is sufficient to understand the functional requirements and to
systematically derive test cases. This is especially true for testers who need to verify, after
completion of the system development, whether the system in operation implements the
requirements completely and correctly.

4.3.6 Ensuring consistency between requirements at
different abstraction levels

A requirements model contains diagrams and textual specifications at different levels of
abstraction (see Section 0). It is important to keep the requirements at the various levels of
abstraction consistent with each other. As part of the data flow view, such consistency
conditions have been introduced in the form of "balancing rules" (cf. [DeMa1979]).

These consistency rules between diagrams at various levels of abstraction can be adopted
in the same way for activity diagrams:

= Inputs and outputs of a function at one level must be consistently present as inputs
and outputs at the next lower level. This begins with the context diagram as the most
abstract representation. Each decomposition of the context diagram must include all
interfaces that were already included in the context diagram. The inputs and outputs
at the next lower level do not need to have the same name because data can be
decomposed, as can the functions. For example, on the higher level, we find the
output "statistics" and at the next lower level "product statistics", "regional statistics",
and "sales statistics". This decomposition is usually described in a glossary (or data
dictionary) or modeled in the information structure view. The ground rule is that the
higher level may contain more abstract concepts which are specified more precisely
during refinement.

= A special rule applies to the balancing of data stores: data stores should be
introduced only at that level of abstraction where they offer an interface between at
least two functions. In other words, a data store which is written and read by the same
function should be hidden inside the function (i.e., it should be shown only in a
refinement of this function). A data store should not be shown in a diagram where it is
needed only by one function. From the abstraction level at which the data store is first
modeled, the read or write access to this data store must be repeated at each lower
level.

Even though activity diagrams usually do not model data flows and data stores, the
balancing rules should be considered. The review/verification of requirements must cover
both the diagrams and the supplementary descriptions. You have to check that the
refinement of diagrams and specifications is consistent at all the different levels.
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4.3.7 Interruptible activity region and receiving/sending
messages

Using an example, this chapter introduces the last two model elements for activity diagrams
which are relevant for requirements engineering: the interruptible activity region and the
receiving/sending of messages:

Example:

A user should have the option to select a person for whom the account transactions should be
displayed. While the transactions are displayed, the user can close the window or select another
person. New transactions can also be received by the system. Thus, the content in the window
should be updated automatically.

In Figure 50 the desired behavior of the system is modeled using an activity diagram. The
box with dashed lines defines the interruptible activity region. All actions that are in the
diagram can be interrupted when signals are received (in the example, only the activity
"Display account transactions"). If a signal receipt is modeled within the interruptible activity
region, all actions in the region will be interrupted when a signal is received.

To better distinguish the signals and to further specify the trigger of the signal, the
stereotypes "User action" and "System event" are used. After receipt of a signal (and the
interruption of the current action), if necessary, another action is executed and the cycle can
start again (here: after receiving the signal "New transactions").
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Figure 50: Example of the modeling of signals in an interruptible activity region

The user terminates the activity by clicking on "Cancel". To complete requirements analysis,
the activities in this diagram should be further specified by refined activity diagrams or
textual specifications. The following must be specified:

= exactly how and in which sequences the transactions are to be displayed
= which options the user has for selecting another person

Signals can also be created and sent (and not only received) as part of an activity diagram.
An example activity diagram for a type of function known as heartbeats is provided in Figure
51. Asign of life is sent out every second. This is triggered by a "Time event" (the hourglass),
which stops the flow each time for the specified time (one second). Again, an interruptible
activity region is used to indicate when the heartbeat should stop.
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Figure 51: Example of heartbeats

4.3.8 Comparison of data flow diagrams and activity
diagrams in requirements modeling

The concepts behind both diagram types and the available model elements have a big
influence on our thinking. In activity diagrams it is easy to express: "F1is executed before F2"
(indicated by an arrow). In data flow diagrams, it is easy to express: "F1 produces D as output
data and F2 needs D as input data" (with a labeled arrow).
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Emphasis on control flow (processing
logic)

= Sequences
» Branches after decisions
= Concurrency (fork/join)

Inputs and outputs have less importance

In the case of sequential activities, the
completion of one activity triggers the
activation of the next activity

Strict time flow (apart from concurrent
control flows, i.e., fork/join)

Emphasis on input/output dependencies
(data dependencies)

=  Who produces what?
=  Who needs what?

Control flow (processing logic) has less
importance

Availability of inputs allows the execution of a
function (process)

No implied sequence (except for the causal
dependency induced by data dependencies)

Table 3: Differences in requirements modeling with data flow diagrams and activity diagrams

To summarize: the emphasis in the modeling languages has shifted back and forth over the
decades. It started with the emphasis on control flows (in flow charts and program flow
diagrams). Later, the emphasis changed to data flows (in DFDs) and back to control flows

again (with UML activity diagrams).

Both concepts—control flow and data flow—are useful tools to support thinking,
visualization, and specification of required functions and their dependencies. A requirements
engineer should be familiar with both concepts and know how they can be used. Due to the
current dominant position of UML and the corresponding tools, you will probably use activity
diagrams. However, you should be able to deal with data flows and data stores in this

notation too.

4.4

State-oriented modeling of requirements

Requirements are mostly derived from dynamic views of the system. The requirements of a
system also can be modeled using a state-oriented view, with a finite set of states and
associated state transitions. This view is particularly important for systems whose behavior:

= Specifically depends on what has been done already (history)

= [sstrongly influenced by asynchronous events
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4.4.1 Purpose

State-oriented modeling allows clear specification of preconditions and postconditions.
These conditions are required for the execution of a function (e.g., a use case or an activity in
the activity diagram). This type of modeling can be applied to the total system or parts of the
system. If it is used to model parts of the system, the model can be arranged in a similar way
to the use cases distinguished (see Section 4.2).

In addition to modeling the states of a system, state machines can also be used to model the
states of a branch-specific object that is described in the information view (see Chapter 3).
As aresult, the effect that different system functions have on that object is shownin an
overview within one state machine. Compared to the purely functional view, for example, in
the process-oriented view, a redundancy is introduced which serves one of the following
purposes:

= The consistency in the specification of the functions is validated.
= A focused view of an object increases the comprehensibility and traceability.

It is important when dealing with state machines that the topic under consideration (the
matter at hand) for which the states are modeled is determined consciously. It may be one of
the following:

= The system under development
= Subsystems of the system
= The objects of a class from the information view

4.4.2 The term "state"

The term "state"—as generally used in requirements engineering—is derived from the theory
of automata: a state is a summary of certain conditions that apply for an object of
observation over a period of time.

But where do the “conditions” for an object come from?

If the item in question is an object (an instance of a class), then the possible states are
described by combinations of possible values of its attributes. Figure 52 shows an example
of a car with six possible values for the color and two possible values for the attribute "Ready
to drive". As a result of these potential conditions, a total of 12 potential states for the car are
available.

«enumeration»
Color type

Car

Red
Color: Color type Blue

Ready to drive: Boolean GIEED
Black
Silver
White

Figure 52: Definition of a car (a)
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Extending the example to another attribute that specifies the mileage, we encounter a
problem if this attribute can have an infinite number of possible values (see Figure 53). The
number of potential states is therefore unlimited, and this can no longer be represented
graphically in the form of a finite state machine.

«enumeration»
Color type
Car

Red
Color: Color type Blue
Ready to drive: Boolean Green
Mileage: int Black

Silver

White

Figure 53: Definition of a car (b)

Methods for reducing the number of states to a manageable level are described in Section 0.

The theory of finite automata (Moore or Mealy automata) is not used widely in requirements
engineering. Statecharts, introduced in 1987 by Harel [Hare1987], or the extension of Harel
Statecharts in the OMG UML [OMG2010b, OMG2010c] and the OMG SysML [OMG2010a] are
used instead.

The Harel Statecharts differ from the original finite state machine mainly regarding the
following three points, which greatly simplify the modeling of the state-oriented view of
requirements engineering:

= More extensive ways of linking functions to states and state transitions

» Introduction of conditions (guards) which, for example, have to be met before the
transition

» Introduction of the possibility of hierarchical state machines and orthogonal regions

The second point in particular has huge implications for modeling the state-oriented view, as
itis no longer necessary to model the entire history in the form of conditions. This reduces
the number of observed states and the complexity of the charts created.

State machines have one property in common: the object of the state machine is always in a
defined state at the moment of observation. This implies that the transition between two
states has no temporal aspect (consumes no time).

In a real life implementation, however, for example in software, these transitions do consume
time. Therefore, the phrase at the beginning of this paragraph must be expressed a little
more softly: an object can respond to events from the outside only if it is in a defined state.
With respect to the implementation, this means that the incoming events must be buffered
for the short duration of the transition. This ensures the required semantics of a state
machine.
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4.4.3 A Simple Example

The diagram in Figure 54 contains a simplified state machine for a windshield wiper system in
vehicles. In this example, the main model elements for modeling a state-oriented view are
presented. They are presented in more detail in the following sections along with the notation
elements of UML.

/ Wash \

do / Wash

after (3s) Wash selected

/

- - [Wiper in park
( Final wipe position] J Start position
entry / Move to park position /\

Wipe selected
[Intermlttent] Wipe selected [fast]
Wiping
stopped Wipe selected
[Normal]
Wipe

f Intermittent Wlplng \ K Normal Wiping Fast Wiping \

Wipe [Intervall] / Intermittent wipe I do / Normal wipe l upe [fast] / Fast wipe l
after (3/5') /

[Wash during wiping\ Wash selected

=)

Figure 54: State diagram for a wiper system

4.4.4 Model elements of state machine diagrams

In this section, we present the most commonly used model elements for modeling a state-
oriented view. We use the notation of UML. For more notation symbols and explanations, see
[OMG2010b, OMG2010c], and [BoRJ2005].
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Simple state

/ State name \

entry / Function

exit / Function

do / Function

Trigger [Guard] / Function
defer/ Function

Trigger [Guard]/Function Transition

v

() Initial state

@ Final state

Composite state

/ State name \

A1 AT:A Sub-machine state
C " ™)

e Statet ™ Orthogonal regions

[Region 1]

[Region 2]

- /

Figure 55: Modeling constructs of state machines (detail)
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4.4.4.1 Simple state

Syntax and semantics
In UML, a simple state is represented with the notation element shown in the following figure:

/ State name \

entry / Function1

exit / Function2

do / Function3

Trigger [Guard] / Function4
defer/ Function5

Figure 56: Notation of a state

A state should always have a name. In addition, in this state you can specify which functions
are called. In UML, the types of function calls listed below are defined in a state and the italic
identifiers are defined with keywords with specific semantics. The identifier "function" refers
to the function that is executed.

= Entry behavior: entry/function: When a state is entered, the function is executed. This
function cannot be interrupted.

= Exit behavior: exit/function: When a state is exited, the function is executed. This
function cannot be interrupted.

= State function: do/function: While the object of observation is in the state, the
function is executed. This can be interrupted by a trigger which leads to a state
change.

» Triggered function: trigger [guard]/function: When the trigger occurs and if the guard
is true, the function is performed without the object exiting the state.

= Delay: trigger [guard]/defer: If an event in the deferred event list of the current state
occurs, the event is deferred for future processing until a state is entered that does
not list the event in its deferred event list (see Section 4.4.4.2)

For the states, the following rules apply:

= Astateis entered when a transition is passed through that leads to this state as the
end point (see Section 4.4.4.2).

= Astateis exited when a transition is passed through that leads away from the state.

= A state becomes active as soon as it is entered. When a state is exited, it becomes
inactive.

= Assoon as astate is entered, the entry behavior (here: function 1) is executed. When a
state is exited, the last thing to happen is the execution of the exit behavior
(here: function 2).

= The state behavior of a state ("do" behavior) is the function (here: function 3) that is
started directly after ending the entry behavior (here: function 1).
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= A state can be exited through a transition only after the entry behavior
(here: function 1) has been fully executed.

= Theinitiation of function 4 by a trigger under an optional guard condition does not
lead to an external state change even if the behavior of a function (here: function 5) is
part of the list of deferred behaviors of the state.

Finding states

If the theoretical viewpoint from Section 4.4.4.2 is followed literally, in general, an object can
have many, sometimes even an infinite number of states. In order to reduce this number of
states to areasonable level, two procedures are recommended:

=  Omit attributes that are irrelevant for the state observation.
= Form equivalence classes of possible attribute values.

Looking at the example from the introduction, for the task in question we can consider
whether for the object car, the attribute color is relevant. If not, it does not have to be
included in the consideration of the state.

«enumeration»
Color type

Car
Red

- Color: Color type Blue

- Ready to drive: Boolean Green
- Mileage: int Black
Silver
White

Figure 57: Definition of a car (c)

Equivalence classes are introduced to decide whether the possible values of the attributes
can be divided into certain areas. The object under investigation will behave in the same way
regardless of exactly which value is selected from a range of values of an attribute.
Therefore, it may seem appropriate to divide the mileage of a car into three areas: "low",
"medium", and "high". This reduces the number of theoretical states to a finite number.

«enumeration»
Car Milage Type
- Color: Color type =
- Ready to drive: Boolean medium
- Mileage: Mileage type high

Figure 58: Definition of a car (d)
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The number of the resulting states can be reduced further by grouping states into
technically useful groups.

When considering systems, states are identified by the following rule: system states differ
from each other by the fact that the system under development shows different behavior to
the outside depending on which state it is in. These differences are reflected mostly in the
fact that an actor will be able to use different features of the system based on the state it is
in.

4.4.4.2 Transitions

Syntax and semantics
In UML, a transition is represented by an arrow with an appropriate name. It connects an
initial state to a target state.

Trigger [Guard]/Function

Figure 59: Notation of a transition

The naming of the edge consists of the following optional elements:

» Trigger: The trigger for the transition. The individual triggers are separated by
commas.

= Guard: A condition that must be true before the transition is executed upon receipt of
the trigger. The guard condition is listed in square brackets.

» Function: The function that is executed when passing through the transition.

Here, note that by definition, going through the transition must not consume any time.
Therefore, only "short" functions should be referenced (such as the starting or stopping of an
engine).

Normally, the output state is exited by going through a transition and then another state is
reached as the target state. However, it may be the case that the source and target state
are the same. This particular type of transition is referred to as a self-transition.

The transitions are triggered by a trigger and executed if the corresponding guard has a
value "true". Of course, this only applies if a guard is specified in the transition.

UML acknowledges numerous types of triggers. In requirements modeling, it is mainly the
following two types of trigger that occur:

= Signal trigger: A signal trigger is an incoming signal to the active state which triggers
the execution of a transition. Therefore, the terms "trigger" and "signal" are very often
used interchangeably.

» Time trigger: With a time trigger, you can trigger a transition at a certain time or after
a certain period of time. OMG UML/SysML use the keyword AFTER, which is listed
instead of the name of the transition.
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In addition to being triggered by a trigger, a transition can be traversed without the trigger.
This is the case as soon as the guard is "true" if you have listed only a guard and no trigger on
the transition.

A guard can check the validity of certain values, such as "x = 5" or ranges of values "x>=10",
as well as statements such as "x is located on the desktop" ("x" in this case can represent a
parameter that results from an operation or a signal. It can also be a system variable). It is
crucial that the guard represents a Boolean condition. The truth of this condition can be
evaluated at any time, that is, the condition has either "true" or "false" as a value at any time.

The receipt of a signal and the consequent triggering of a transition are executed only when
the object of observation is in a state which includes the signal as a trigger and the transition
leads away from it. If no such transition is defined for the current state, then the signal is
discarded. In the current state, this signal is defined as "to be delayed" (defer). The signal is
reset and once the next signal arrives, it will be used again.

Transitions provide a transition from a source to a target state. If two transitions have the
same initial state, they should be distinguished by different triggers or with the same trigger
but different guards. This is not a prerequisite, but it makes the execution of the resulting
state machine deterministic.

Finding transitions
There are two different approaches for finding the transitions:

= |dentification of transitions from outgoing states
= |dentification of transitions from incoming signals

The first approach is very intuitive because you have already given some thought to the
identification of the states, why two states are to be differentiated, and when to switch from
one state to another. An example of this approach is when you examine the use cases you
have assigned to the states as functions. Is the postcondition formulated defined as a state?
If so, the transition should lead to that state because the system should take on exactly this
state (see also Section 4.2).

The second approach is more methodical. This is about whether and how the use case
responds to an external signal when the systemis in a particular state. This is repeated for all
incoming signals and potentially for all states. This approach is more likely to be used in the
consideration of a more technical system, in which perhaps the interfaces are specified with
the external interfacing systems.

The second approach for finding transitions is also closely related to the modeling in the
scenario view (see Chapter 5). A message that is received from the object under
investigation will generally result in one or more state transitions during the processing of the
message. Therefore, modeling of the scenario view is also used to locate and verify the state
transitions in a state machine.
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4.4.4.3 Initial state

Syntax and semantics

Figure 60: Notation of an initial state

Whenever a state machine is started, the first transition is the transition that leads from an
initial state to a state. Because a system must always be in a certain defined state, the initial
state is also referred to as a "pseudo" state. The system s never in such a state at any point
in time. This means that no guard and no trigger may be listed on the output edge of an initial
state.

In addition to an initial state in a state machine, initial states can also exist in the composite

states. Section 4.4.4.5 looks at this subject matter in more detail.

Finding initial states
Each state machine should have exactly one initial state and finding it is not difficult. You
simply draw the first state that the system is to take after the start.

4.4.4.4 Final State

Syntax and semantics

Figure 61: Notation of a final state

If the final state is reached, the execution of the overall state machine is terminated. After
reaching the final state, no additional activities are executed. Therefore, there can be no
outgoing pointer from final states. Technically, the final state can be seen as the end of the
life cycle for the modeled object under investigation.

Finding final states

At this point, we have to consider and analyze in detail the specific features of the object
under investigation. Which of the life cycles is relevant for meeting your requirements?
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For example, if software is considered solely while it is being run, then exiting the software
equates to the final state. However, if we are considering an embedded system over the entire
period in which it is "built" into its environment, no final state is needed because the system may
never terminate (see also the example in Section 4.4.3).

In addition, final states also exist in the composite states, which are presented in the next
section.

4.4.4.5 Composite state

Composite states are composed of one or more states.

Syntax and semantics

/ State name \

entry / Function

exit / Function

do / Function

Trigger [Guard] / Function
defer / Function

N /

Figure 62: Notation of a composite state

The states included in a composite state are referred to below as substates. All types of
states are possible as substates of a composite state. This means that in addition to the
simple states and pseudo-states, you can also use a composite state. This allows you to
define a hierarchy of states. The leaves in the resulting state tree are the simple states; the
inner nodes are composite states.

(D State Machine
. Composite State

O Simple State

Figure 63: Hierarchical states
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The root of the state tree is an exception because in a fully defined model, it always
represents a state machine. It describes the behavioral description of the object under
observation as it is seen from the outside.

As described in Section 4.4.2 above, one state must be active in a state machine. This rule
must be met at all times. If the state is a composite state, one of its substates is active. Since
this substate may in turn be a composite state, the definition of the active states continues
downwards in the hierarchy until a simple state can be referred to as the active one.

Entering composite states
The possibilities for entering a composite state are described in the following figure.

(o4
=

Figure 64: Entry into composite states

Semantics when entering composite states:

= Default entry (trigger T1): If state A is entered starting from state B, the start node is
passed through and the active state is A1.

= Explicit entry (trigger T2): If state A is entered starting from state C, the starting node
is not passed through and the state A.2 is entered directly.

Modeling provides the history construct as another possibility for entering composite states.

[ Operating modes car radio \

Radio mode

switched on

T
/\'?'/K

CD ejected, CD inserted
switched manually [Audio CD]

switched off CD changer mode

N /

Figure 65: Shallow history
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If the state "Operating modes car radio" is entered, the state which was active the last time
this state was exited becomes active again. It is only in the special case of the first-time
entry (i.e., nois history available) that the "Radio mode" is active. In the picture, the "Shallow
history" is represented by H.

If there is a deeper hierarchy of composite states, the "Deep history" may be used. This not
only remembers the substate of the upper level but also ensures that all nested substates
(down to the leaf level) are remembered. This deep history is represented by H*.

/ Operating modes car radio \
Standby ehed /_ Radio mode \
switched on

\Jﬁh FM

—\
AM FM
selected selected

switched off
AM

Figure 66: Deep history

Exiting composite states
There are also different ways to exit composite substates.

/ A I

Figure 67: Exiting composite states

Exiting a composite state:

» Reaching the final state (trigger T2): There must be a transition from state A without
a trigger which is executed. The next active state is F.

* Transition of a substate (trigger T4): This corresponds to the logical semantics: if A.1
is active and signal T4 is received, state E becomes active.
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» Transition of the composite state (trigger T3): Regardless of which substate is active
(A.1or A.2), as soon as the trigger T3 occurs, state A is exited. The strength of this
modeling construct is demonstrated here. A state hierarchy emphasizes abstraction
as a technique for coping with complexity because the behavior on the upper level is
defined completely independently of the situation within A.

Finding composite states

Using composite states becomes easy with the following rule: if the system should exhibit
similar behavior (exiting the state, calling functions) in several different states, these states
may be combined into a composite state. However, it is not permissible for one state to
belong to several different composite states. In this case, you have to determine (based on
application logic) how to resolve this conflict.

In general, however, composite states arise relatively naturally when we look at the modes of
the application. For example, a fan has two states at the upper level: "on" and "off". The "on"
state can then be subdivided further based on the chosen speed (slow, fast).

/ Powered \
On \

Switched on [req. /
RPM=<1000] ( Slow ]
Off Switched off
Switched on [req. Switched on [req.
RPM>1000] RPM=<1000]
Power off
Without power f Fast
Power on Switched on [req.

RPM>1000]
N S /)

Figure 68: States of a fan

4.4.4.6 Substate machine

Syntax and semantics

A substate machine is represented as a simple state. However, there are two possible
extensions to a simple state. The name of the substate machine and the name of the state it
is associated with are separated by a colon. The other option is to put a shape that
resembles a pair of glasses at the bottom right.

D G

Figure 69: Syntax of a substate machine
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With the introduction of the substate machine, the idea of hierarchical Statecharts, as
introduced by composite states, is continued. The lower-level states of a composite state
are shown graphically as a separate state machine (in a separate diagram). At a higher level,
the state machine is referenced via this substate machine.

In order to also use the transition mechanism described in Section 4.4.4.5 in substate
machines, entry and exit points are introduced. With these model elements, both an explicit
entry and a transition can be modeled in a substate. This continues the concept of
abstraction as described in Section 4.4.4.5.

Figure 70 shows the transformation from a composite state into a substate machine.

A
Off1

T2
\

T, I

AN >

o
e a ’
</
<

Ve
.

Figure 70: Use of entry and exit points

The left-hand part models a composite state; the right-hand part shows the use of a
substate machine. Note where the triggers T4 and T2 are listed in the solution on the right. An
example of the distribution of guards is given in the example section below.

Finding substate machines

For the identification of substate machines, the same heuristic can be applied as is used in
identification of composite states (described in Section 4.4.4.2). In addition, note that
multiple abstract state machines can be used in one substate machine. The diagrams can be
made clearer using this concept.
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Example:
As an example of this type of reduction of the complexity, the state machine of a fan is shown
with an abstract state machine and a refinement of the state "On".

7 Powered N

regulate speed
off Switched on .
Switched off

Power off Poweron

: Without power :

Figure 71: State machine of a fan

[req.
RPM=<1000]

regulate speed

( Switched on [req.
RPM=>1000] Switched on [req.
RPM=<1000]
[req.
RPM>1000] P
- y,

Figure 72: Hierarchical states of a fan

4.4.4.7 Orthogonal Regions

Using orthogonal regions, it is possible to define two or more parts of a state machine that
can respond independently to events.
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Syntax and semantics

4 State1 N\

[Region 1]

[Region 2]

- /

Figure 73: Syntax of orthogonal regions

A state can be divided into several orthogonal regions. Each region can have its own state
machine, similar to the composite states model. This allows the opportunity to reduce the
number of states if states can be distributed over several independent sets.

By way of explanation, let us look at the following example of an infotainment system which
offers both a radio and a navigation system (see Figure 74). After turning the infotainment
system on, the radio and the navigation can be switched to standby independently.
Furthermore, the navigation can be set to destination entry or to the route guidance.
Regardless of the navigation, the radio can be in radio mode or in CD changer mode.

These six possible states for the two parts would result in a total of nine substates (3 times 3,
this will become clearer later on), presuming the system is in the active mode (after
activation). Since each of the three states are independent of each other, the state active
can be splitinto two orthogonal regions. The following state machine shows the result of this.
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/ Active \

[Radio]

Standby Radio switched on Radio mode

Radio switched off

/ CD inserted CDinserted

CD changer mode

[Navigation] Standby

Radio switched off CD ejected

Switched on

Destination input
New destination

/ Navigation finished Navigation started

. New destination

Route guidance /

o v

Switched off

Figure 74: Orthogonal regions of an infotainment system

For the independence of the states, the following rules must apply:

= The behavior in a region is independent of the current state in the other region.
» Transitions across the boundaries of the regions are not allowed.

Note that even with the use of orthogonal regions, the paradigm mentioned in Section 4.4.2
is not violated. The system is still in exactly one state at any time but the state results from
the combination of the active states in the individual regions.

The example given above uses one possibility for exiting the active state just as in the
composite states. For entering the active state, the modeling construct of parallelization is
used to express which two substates the system should adopt at the same time. In addition
to these options, there is a variety of other entry and exit options. For a complete overview,
see [BoRJ2005].

The following figure shows the state machine of Figure 74. We can clearly see that from the
six states modeled, nine states are now being derived. The number of transitions increases
even further.
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/ Active ™\

new destination

e Navigalion darted Radio:CD changer mode | Radi0:CD changer mode |
" L /l Nav igati guidance finished Nav igati
Switched on New dedination
Switched off /
Radio switched on CDinsened
Radio switched off
0 insered CDejected

CD inserted

Radio switched off

io mode |
Nav igation:Route
guidance

[
Navigation:Route
quidance

Radio switched off

Radio switched on

CDinserted

CD ejeded
Navigation finished Navigation finished

Radio switched on Radio:Radio mode /

Nav igati
Radio switched off

New desination

new dedination

Radio: Standby /
Navigai

Navigation ared

Navigation darted

New destination New deination

Radio:Standby | Radio switched off Radio:Radio mode /
Nav iy y .

Navi
input j\ Radio switched on \ input l\
CD ejected /l\

CD inserted

Figure 75: Resolved orthogonal regions

Finding orthogonal regions

Finding regions and recognizing that orthogonal regions can be formed is not always easy. It
is good practice to start modeling without orthogonal regions. When the state machine
becomes too complex, check whether perhaps the names of the states indicate certain
orthogonal regions. In many cases, an indication for those regions is that parts of a state
(refinement) are discussed in several independent parts of the state machine.

4.4.5 Typical state machines/modeling scenarios

4.4.5.1 Generic state machines for technical systems

The following figure shows a generic solution which can serve as a template for state
machines of technical systems.
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Power off

Shutdown
Power switched off

/ Shuting down \

entry / Shutdown system l

Shutdown

Booting

entry / Startup system

[Diagnosis sslected]

[Cperational mode selected]

Operational Mode
O

Shutdown

Diagnosis Mode

oSO

Figure 76: Generic state Machine of a technical system

In this machine, the two states "Diagnosis Mode" and "Operational Mode" should be further
refined. However, these refinements are highly dependent on the system under
development, so no further statements about the form of these states can be taken at this
point.

Even more states can be integrated in this state machine if required. In infotainment systems
in the automotive industry, for instance, a "Driving Mode" can be defined in which the system
does not accept inputs. This state would be parallel to the "Diagnosis Mode" and
"Operational Mode".

4.4.5.2 States of Objects of a Business-Oriented System

As a typical example of the states of an object in a business-oriented system, we will use the
object request for leave. Figure 77 shows the state machine of this object, whereby the full
definition of triggers, guards, and functions is omitted:
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( Active \
. Submitted

Saved

L

Employee retired

Processing )
after (2 years),
Employee
Confirmed retired

/ inactive

Completed [Error]
Withdrawn Cancelled
Forwarded
Checking
Rejected
Completed [Rejected]
Completed [okK]

Released Datelieached { Claimed ]
. . J

Figure 77: States of a request for leave

L

i3

3

As we can see in the machine, the states of the object correspond to time periods in which
the request for leave is stable (for some time). This also corresponds to the possible stages
of processing by use cases because a use case contains a complete interaction between an
actor and the system. As a result, the states of the request for leave must be stable after a
use case is completed. From a technical perspective, this means that this information must
be stored in the database so that the logical implementation knows which steps are allowed
for a specific request for leave.

The close relationship between the states and the use cases for processing such a request
for leave can be expressed in another way: the states of the object specify the
postconditions that have been defined in a use case.
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4.5 Further reading
Data flow perspective

= DeMarco, Tom: Structured Analysis and System Specification, Yourdon Press,
Prentice Hall, 1979

Control flow perspective—in particular, activity diagrams

= Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference
Manual, Addison Wesley, 2004

= Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley 2005.

Use case modeling and specification

= Jacobson, |.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software
Engineering — A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

= Rumbaugh, J.; Jacobson, |.; Booch, G.: The Unified Modeling Language Reference
Manual, Addison Wesley, 2004.

= Cockburn, Alistair: Writing Effective Use Cases, Addision Wesley, 2000.

State perspective

= Rumbaugh, J.; Jacobson, |.; Booch, G.: The Unified Modeling Language Reference
Manual, Addison Wesley, 2004
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5 Scenario modeling

Today, scenarios are an essential tool in requirements engineering, for example, to specify

the system vision and goals of stakeholders or to describe the added value created for the

users of the system. Scenarios have the character of examples which look at the use of the
system under development by humans or other systems (see, e.g., [Caro1995]).

Besides their use for the exemplary description of the use of the system under development,
scenarios can also be used to specify functional requirements precisely. In this case, in the
associated scenario view, all the scenarios that occur in the system usage are specified at a
high level of precision—for example, through UML sequence diagrams or Message Sequence
Charts according to the ITU standard [ITU2004].

5.1 Purpose

Since the early 1990s, scenarios have been used in requirements engineering to support the
systematic specification of requirements (see, e.g., [Pott1995]). If the starting point for
requirements engineering is the raw system vision or the goals of the stakeholders, in many
cases it is difficult to immediately specify the requirements of the system completely and
correctly based on that vision or those goals (see, e.g., [DaLF1993]).

This key insight led to the use of scenarios in requirements engineering. Scenarios focus on
the interaction-based view which is a specific behavioral view of the functional requirements
of the system. In this view, the behavior of the system is described by sequences of
interactions between communication partners. In the center of the interaction-based view
are the communication partners that represent either systems or individuals in the system
context or the system under development, and the interactions between these
communication partners.

An interaction between communication partners is a sequence of messages exchanged
between these partners. These messages can be information or data that is exchanged via
communication channels between the communicating actors. Moreover, requirements
engineering also considers messages in the form of tangible flows between communication
partners in interactions, for example, a material flow or cash flow between communication
partners.

A scenario is an interaction between communication partners (often between the system
under development and actors in the system context) that leads to a desired (or possibly
undesired) result. Scenario modeling is often used to specify the system vision and goals of
stakeholders with regard to the desired use of the system. Scenario modeling is not normally
limited to only the interface of the system under development in the form of the direct
message exchange between actors and the system but also considers messages that are
exchanged between actors in the system context. Thus, scenario modeling is not only the
modeling of the requirements of the system under development, but also the interaction
context of messages which are exchanged between actors and the system under
development.
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In requirements engineering, the added value to an actor in the system context is often seen
as an essential result of a scenario. The following example illustrates a simple scenario
described in natural language which documents an interaction between a person (John) and
an online store so that John can make a purchase.

Example Scenario "Shopping in an online shop™:

In the product catalog of the online shop, John chooses the desired products and then confirms
that he would like to finalize the purchase. The online shop shows John the selected products
including the quantity and price and the total of the purchase. The online shop asks John to
confirm the purchase.

After John has confirmed the purchase, the online shop asks for the shipping address. John
enters the desired shipping address and confirms it. After confirmation of the shipping address,
the online shop asks John for the payment information. John enters the payment details and
confirms them.

The online shop then displays the complete order including shipping address and payment
details and asks John to confirm this order. John confirms the order, whereupon the online shop
displays an order confirmation.

The associated added value that the actor (John) gets through the use of the online shop is
that John can order the desired products via the Internet.

5.2 Relationship between scenarios and use cases

There are various types of scenarios in requirements engineering. An extensive analysis of
the different types of scenarios can be found in [RAC1998]. The following paragraph
presents two frequently found differentiations of scenarios and the related types.

One common differentiation of scenarios distinguishes between main scenarios, alternative
scenarios, and exception scenarios. This distinction is a key element of use case-based
approaches (such as [JCJO1992]), in which scenarios that relate to a specific added value
are grouped within a use case and are documented complementary to each other (see
Section 4.2.5). The use of main, alternative, and exception scenarios is not necessarily limited
to use case-based approaches.

= A main scenario is a scenario that describes a predominantly occurring sequence of
interactions to achieve a specific result (e.g., a specific added value).

= An alternative scenario is a scenario that describes an alternative sequence of
interactions to achieve the specific result in relation to a main scenario.

»= An exception scenario is a scenario that describes a sequence of interactions that
must be executed if a defined exception event occurs. In requirements engineering,
exception scenarios are specified to handle exceptional situations in operations in a
controlled manner, often in addition to main and alternative scenarios.

In practice, the number of exception scenarios is in most cases considerably larger than the
number of alternative scenarios of a main scenario. This is because the exception scenarios
(and associated exception events) should preferably cover all situations that can occur
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during the execution of the main or alternative scenarios and that prevent a further
successful execution of the corresponding scenarios (or the associated use case, see
Section 4.2) in the operation of the system. Each exception scenario specifies a controlled
exception handling in response to a defined exception event.

5.3 Approaches to scenario modeling

The modeling of scenarios allows the documentation of extensive and complex situations
which involve the interaction-based behavior of the system in an easily understandable and
structured way. Diagram types that allow the documentation of an arrangement of
interactions between communication partners in visual form are particularly suitable for
modeling scenarios. Today, sequence diagrams are often used for modeling scenarios. In
sequence diagrams, the communication partners involved in the interaction sequence are
arranged in the horizontal dimension.

The interactions between the communication partners are modeled in the order of
appearance in the vertical dimension. In this way, scenarios from use cases can also be
specified in more detail through diagrams (see Section 4.2).

In the telecommunications industry, Message Sequence Charts (MSCs) of the International
Telecommunication Union (ITU) according to the standard ITU-T Z.120 [ITU2004] are used.
The high degree of formalization of MSCs offers far-reaching possibilities for automatic
processing such as quality inspection (e.g., to check freedom from contradictions and
completeness) or generative approaches for development.

The use of h (high-level) MSCS (similar to the interaction overview diagrams in UML 2) allows
appropriate structuring of extensive and complex models in the scenario view. The ITU-T
Z.120 standard came into force in 1992 and has been subject to continuous improvement
ever since. In particular, it has heavily influenced the sequence diagrams of UML
[OMG2010c, OMG2010b] and the sequence diagrams of SysML [OMG2010a].

The use of UML/SysML sequence diagrams has the advantage that UML and SysML are
much more widespread in practice than competing modeling approaches, such as those of
the ITU. Moreover, through the metamodel of UML/SysML, scenarios modeled in
UML/SysML sequence diagrams can be integrated with other views of requirements
modeling if UML or SysML diagram types are also used in these views.

Besides UML and SysML sequence diagrams, UML provides another diagram type,
communication diagrams, which also allows scenario modeling. Compared to sequence
diagrams, which focus primarily on the sequence of interactions between communication
partners, UML communication diagrams focus on the visualization of the bilateral
interactions between communication partners. The sequence of interactions is then
indicated by sequence numbers added to the interactions.

5.4 Simple examples of a modeled scenario

Figure 78 shows the modeling of a simple scenario in the form of a UML sequence diagram
(@) and a UML communication diagram (b).
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Figure 78: Modeling of a scenario with (a) sequence diagram and (b) communication diagram

Both diagrams model the scenario "Record navigation data". The name of the scenario is
specified in the upper part of the frame. The keywords "sd" and "cm" respectively designate
the diagram type used to model the corresponding scenario. In Figure 78, "sd" stands for
sequence diagram and "cm" for communication diagram.

The sequence diagram on the left of Figure 78 shows a sequence of interactions between
instances of the communication partners ":Driver", ":Nav" and ":MapServer" that must be
executed so that the driver can enter the navigation data in the navigation device. The
system under development is labeled with the stereotype <<SuD>> (system under
development) to make the separation between the system and the actors in the system
context clear.

As shown, in sequence diagrams the sequence of interactions is modeled in the vertical
dimension. In the horizontal dimension, the instances of the communication partners
involved in the given scenario are listed. The "" in front of the name of the communication
partner indicates that it is a concrete instance. The arrowhead indicates the direction of the
message exchange.

The communication diagram on the right of Figure 78 also represents the scenario "Record
navigation data". In this diagram, however, the sequence of the interactions is not
documented in the vertical dimension but is instead annotated by specifying sequence
numbers for the interactions.

With a line between communication partners, the communication diagram visualizes the
existence of a direct communication relationship. The interactions occurring due to this
communication relationship are documented by messages. Each of these messages is
specified by a name, the associated sequence number of the message in the scenario, and
the direction of the message flow.
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In the visualization, communication diagrams place special emphasis on the communication
relationship between two communication partners. In contrast, the temporal or logical
sequence of interactions of scenarios is better visualized by sequence diagrams.

Due to the different priorities of the visualization, the requirements engineer must decide,
depending on the situation, which one of the two diagram types is most appropriate for the
respective use (T pragmatic quality).

If different uses are required, a scenario can be modeled in both diagram types. The
sequence diagram or the communication diagram could also be constructed automatically
from the diagram of the other diagram type. However, what is significant is that complex
interactions (e.g., the conditional repetition of messages or alternative messages) cannot be
represented by communication diagrams or only with a great deal of difficulty.

In the next section, the different model elements for scenario modeling with UML/SysML
sequence diagrams or UML communication diagrams are presented, including an
explanation of their specific relevance for modeling requirements. Further information about
the model elements of sequence diagrams and communication diagrams can be found in
[OMG2010b] or [OMG2010a].

5.5 Scenario modeling using sequence diagrams

Figure 79 shows the model elements of UML/SysML from OMG for sequence diagrams
which are used for modeling scenarios.

Basic modeling el [ Ad oo P Term ] \

| I | L b |
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Figure 79: Model elements for scenario modeling using sequence diagrams
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The left-hand panel of the figure presents the basic model elements, that is, those model
elements that are essential for modeling scenarios with sequence diagrams. The right-hand
panel of the figure shows the model elements that are used to model more extensive and
more complex interaction relationships between communication partners.

5.5.1 Basic model elements

5.5.1.1 Modeling the identifiability and referenceability of
a scenario

Sequence diagrams have an outer frame (interaction frame) which has the name of the
scenario that is modeled by the diagram in a register in the upper left area.

The name of the scenario has the prefix "sd", which, as already explained above, indicates
that the scenario is modeled by a sequence diagram. The use of frames means that the
scenario can be identified and referenced by name, which in particular supports the
management of different diagrams.

5.5.1.2 Modeling the communication partners of a scenario

A lifeline represents one instance of an actor within the scenario. The naming of the lifeline
follows the pattern instance name: type name (e.g., Peter: Driver). When modeling scenarios,
instance names are often omitted. However, instance names should be specified if it
improves the understandability of the modeled scenario.

If several instances of a certain communication partner are needed in one scenario, each
instance should be given a different instance name. This differentiation makes it clear that
two different instances of an actor of a scenario are involved and that there is a direct
message exchange.

The activation of a lifeline indicates that the respective communication partner has the
control in the visualized period within the scenario, that is, the communication partner
determines the control flow of the scenario. A termination in the lifeline of an instance
signifies the destruction of the corresponding instance of the actor. Figure 80 shows an
example of modeling a lifeline with activation and termination.

Medcoml:MediaServer |<— lfeline

1
activation \_\|:|

>'<K termination

Figure 80: Modeling of lifelines and termination
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5.5.1.3 Relationship of actors in scenarios to context
models and use case models

The actors in the scenarios are also visible in use case diagrams and the context diagrams of
the system, which means that the modeled scenarios can be integrated with the use case
diagrams of the use case view (cf. Section 4.2) and the context diagrams (cf. Section 2.2) via
the communication partners in the scenarios. Typically, the context diagrams are created
before the scenario modeling, which means that the actors and interfaces documented in
the context diagram can structure and guide the systematic creation of scenarios. Actors
that occur in the scenario modeling but cannot be found in the corresponding use case and
context diagrams indicate that the context and use case models are incomplete (cf. Section
4.2.3).

5.5.1.4 Modeling the message exchange within a scenario

The message exchange between two instances of communication partners within a scenario
is visualized by an arrow. The direction of the arrow indicates the direction of the message
exchange. There are two types of message exchange.

In an asynchronous message exchange between instances within the scenario, the
transmitter sends the message to the receiver and does not wait for a corresponding
response in the form of a message from the receiver. In scenario modeling, asynchronous
messages are used, for example, when an instance wants to send information to one or more
instances within the scenario and does not expect a response from the receiver.

In a synchronous exchange of messages between instances within a scenario, the sender of
the synchronous message waits for a response message from the receiver. One use of
synchronous messages in scenario modeling is when an instance within the scenario
requests information from another instance. An example of this would be the synchronous
message "Request personal identification number (PIN)" sent by the instance of an ATM to
the instance of a user. The ATM then waits for the user to enter the PIN, that s, to send a
response message with the PIN.

In scenario modeling in requirements engineering, the "message exchange" refers not only to
data that is transmitted through a communication infrastructure between communication
partners; a "message exchange" within a scenario may also represent the exchange of
tangible or intangible entities—for example, the insertion of a credit card (tangible entity) into
the ATM by the user.

Figure 81 shows an example for the modeling of both asynchronous and synchronous
messages.
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Figure 81: Modeling a) asynchronous and b) synchronous messages

Through message exchange, the sending communication partner can request a service from
another communication partner. Again, the service call can be asynchronous or
synchronous. With an asynchronous invocation of a service, the service is merely triggered
by a message, that is, the calling communication partner does not wait for an answer. With a
synchronous call, the transmitter waits for the corresponding response from the receiver
once he has requested the service from another communication partner through a message.

A service call can also include its signature, which means that input parameters (arguments)
and return parameters can be specified. Parameters are typically defined in the information
structure view, which creates a relationship (integration) between the scenario view and the
information structure view. Figure 81 also shows the use of the optional model element to
represent the activation of a communication partner.

Figure 82 shows an example of the modeling of a service call with incomplete and complete

parameters.
| :MediaClient | | :MediaServer | | :MediaClient | | :MediaServer |
i CreateTitlelist(...) g i CreateTitlelist(Startdate) 1
H return 'I] H return Titlelist
5 Sininlelelelelelelelelelelelelelele T o Snininieiiiiieleleleieiuietelell 1
() (b)

Figure 82: Modeling of a service call a) with incomplete and b) complete parameters

5.5.1.5 Relationship of messages in scenarios to state-
oriented modeling, data flow-oriented modeling, and
information structure modeling

The exchange of messages within a scenario represents the essential integration point to the
diagrams of other views of the requirements of the system under development (cf. Figure
83).
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Figure 83: Messages in scenarios as an integration point with other requirement views

Relationship of messages to states in the state-oriented view

As shown in Figure 83 (a), both receiving and sending a message corresponds to a change in
the state of the actor. In Figure 83 (a), for example, receiving the message
"CreateTitlelist(Startdate)" corresponds with the state change of the communication
partner ":MediaServer" from the state "Wait for title request" to the state "Title request
received". Sending the message "return Titlelist" also results in a state change for
":"MediaSever" (into the state "Title list sent").

At the same time, receiving this message results in a state change of ":MediaClient". The
states of the various communication partners of a scenario and the state transitions can be
modeled through diagrams of the state-oriented view, for example, through a UML state
diagram (see also Section 4.4).

Relationship of messages to functions/activities in the data flow-oriented or
control flow-oriented view

As shown in Figure 83 (b), there is a functional relationship between receiving a message and
subsequently sending a message based on the system under development. The reason for
this relationship is that the system has to execute a function based on the incoming message
and, where applicable, based on locally available information in order to create the result
message.

These functions (processes, activities) are typically modeled in the data flow-oriented or
control flow-oriented view: the data dependencies and control flow dependencies between
these system functions are modeled, for example, in one or more data flow diagrams and
activity diagrams (see also Section 4.3).

Relationship of messages to classes, attributes, and associations in the
information structure view

As shown in Figure 83 (c), the messages and any corresponding parameters are defined in
the information structure view of the requirements. The corresponding information is
specified, for example, in a class diagram which defines the information structure of the
messages in detail, including the technical relationships to other messages that are
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exchanged between the system under development and the actors in the system context
(see also Section 3).

5.5.2 Advanced model elements

The use of combined fragments allows us to model large and complex interaction-based
behavior in scenarios in an easily understandable way through sequence diagrams. UML or
SysML distinguish between a number of different types of combined fragments.

Below, five types of combined fragments are presented which are very suitable for modeling
large and complex interaction-based behavior in scenarios. Combined fragments are
modeled through interaction frames within a sequence diagram. The type of the combined
fragment and thus the corresponding meaning of the interaction within the combined
fragment in relation to the surrounding scenario are specified via a keyword in the register of
the combined fragment. In the vertical dimension of the sequence diagram (timing), the
interaction frame is typically extended as far as the specific interaction takes place over
time. In the horizontal dimension, the interaction frames of the combined fragments are
extended as far as to include all instances that exchange messages within the specific
interaction in the combined fragment.

5.5.2.1 Modeling alternative interactions of a scenario
Cnaltn)

Alternative fragments are used to model alternative interaction sequences (i.e., an
alternative behavior) of a scenario. Within the sequence diagram, a corresponding
interaction frame is modeled with the keyword "alt" in its register.

The interaction frame is divided into two or more sections. For each of these sections, an
explicit Boolean condition must be specified that determines when ("when" in the sense of a
logical condition) the interaction in the corresponding section is executed. For one section,
the condition "else" can be given, thereby specifying that the corresponding interaction is
executed if none of the other conditions at the time of the potential entry into the combined
fragment are true.

If this section is omitted, no interaction is executed if none of the conditions are true when
the combined fragment is entered. The Boolean condition of each section is typically
modeled over the lifeline of the instance within the scenario that has access to the value
used to evaluate the Boolean condition. The Boolean condition can be arbitrarily arranged
over the lifelines if the values are global values.

In formulating the conditions for individual sections of the alternative interaction of the
scenario, it is important to make sure that they do not overlap from a logical point of view,
that is, no more than one condition is true when the combined fragment is entered. If thisis
not the case, the associated scenario would have non-deterministic behavior (cf. Section
4.4). Figure 84 shows an example for the modeling of a combined fragment of the type
"alternative".
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workstation

alt [electronic message]

transportation damage message
i ~ damage info

[manual message] transportation damage message

damage info

Figure 84: Modeling of a combined fragment of the type "alternative"

5.5.2.2 Modeling optional interactions of a scenario ("opt")

Optional fragments are used to model optional interactions (i.e., optional behavior) of
scenarios. Within the sequence diagram, a corresponding interaction frame is modeled with
the keyword "opt" in its register. In the interaction frame, an explicit Boolean condition should
be specified that defines which condition must be true during the execution of the scenario
at the time of the potential entry into the combined fragment. The interaction modeled in the
optional fragment is then executed.

The Boolean condition is typically modeled over the lifeline of the instance within the
scenario which determines whether the corresponding condition is satisfied or not. If the
condition is not true at the time of the potential entry into the combined fragment, the
corresponding interaction (or the associated exchange of messages) does not take place
during the execution of the scenario. An optional combined fragment may be regarded as an
alternative combined fragment that has only one section with a corresponding condition.
Figure 85 shows an example of the modeling of a combined fragment of the type "optional".

<<SuD>>

:Dispatcher :Customer
workstation

opt . [Premium customer]
Replacement transport data ‘

Figure 85: Modeling of a combined fragment of the type "optional”
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5.5.2.3 Modeling abstractions of interaction sequences of a
scenario ("ref")

Sequence diagrams provide the ability to abstract from combined interaction sequences of
a scenario by referring, at the appropriate position in the sequence diagram, to another
sequence diagram which models the corresponding interaction of the scenario. For this
purpose, a combined fragment is modeled in the sequence diagram at the position at which
the abstracted interaction occurs. The combined fragment is then characterized in its
register with the keyword "ref".

The name of a scenario is specified in the center of the fragment. This is the scenario which
contains the detailed interaction which, during the execution of the parent scenario, is
integrated into the interaction of the scenario at the position indicated by the combined
fragment. The use of combined fragments of this type is particularly appropriate when large
or complex interaction behavior of a scenario has to be modeled.

This allows the requirements engineer to extract technically connected interactions of a
complex scenario into a separate sequence diagram. The use of combined fragments of the
type "reference" is also appropriate if certain interactions (such as the interactions to
authenticate a user on the system) occur in an identical manner in several scenarios.

When modeling interaction sequences in separate sequence diagrams which are referred to
in other sequence diagrams by a combined fragment of the type "reference", the
requirements engineer must ensure that the partial scenario that will be included is
compatible with the parent scenario. For example, no instances that do not occur in the
parent scenario or in the corresponding sequence diagram may occur in the partial scenario.
Figure 86 shows an example of the modeling of a combined fragment of the type
"reference".

:On-Board- :On-Board- “ssub=> :Fleet :Order

System 2 System 1 :D|spatcher -Dispatcher management acceptance ‘Customer
workstation

ref ) .
Provide replacement vehicle

Figure 86: Modeling of a combined fragment of the type "reference"

5.5.2.4 Modeling repetitions of interactions within a
scenario ("loop")

To express repetitions of interactions within a scenario, a corresponding interaction frame is
modeled within the sequence diagram with the keyword "loop" in its register. In combined
fragments of this type, the number of repetitions is specified either by 1loop ([number]) or

by loop ([min, max]) with alower (min) and an upper (max) limit on the number of
repetitions.
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In the latter case, the limits for the repetition specify that the interaction is repeated within
the interaction frame at least min and at most max times. In this case, the repetition of the
interaction within the interaction frame is also specified by a Boolean condition.

If the interaction within the interaction frame of the scenario is repeated min times, the
repetition is discontinued if the evaluation of the Boolean condition is false when re-entering
the interaction frame of the combined fragment.

If the Boolean condition is true for each entry into the interaction frame, the repetition of the
interaction is completed after max runs. Figure 87 shows an example of the modeling of a
combined fragment of the type "loop".

:On-Board- :On-Board- 'D<'<SutD;>
System 2 System 1 -Dispatcher
workstation

Loop(0,3) J[Acceptance not successful]
: Transportatidn documents :

] Acceptance R

Figure 87: Modeling of a combined fragment of the type "loop"

5.5.2.5 Modeling the termination of a scenario ("break")

During the course of a scenario, situations may arise that prevent the successful execution
of the scenario. To represent the necessary exception handling from a technical point of
view in such cases, the interaction for the exception handling can also be modeled in
sequence diagrams. The termination fragment contains an optional Boolean condition and
an optional interaction that is executed to handle the termination if the condition for the
terminationis true.

If no explicit termination condition is specified, the combined fragment only documents the
interactions that are executed if an unspecified termination condition is true. For the precise
specification of requirements, it is imperative, however, that the termination conditions are
explicitly documented. If a termination happens during the execution of a scenario, only the
interaction in the termination fragment is executed—that is, the execution of the scenario
ends after executing the interaction in the termination fragment. This happens even if there
are further interactions specified in the sequence diagram after the termination fragment.
These interactions are executed if the termination condition is not true during the execution
of the scenario.

If a termination fragment does not contain an interaction, the scenario ends right after the
termination condition is true. Figure 88 shows an example of the modeling a combined
fragment of the type "break".
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System 2 System 1 :D|spatcher ‘Dispatcher management
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Break ) [Vehicle not available]
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_—>

Figure 88: Modeling of a combined fragment of the type "break"

5.5.3 Nesting fragments

The use of combined fragments makes it possible to model several potential sequences of a
scenario in a single sequence diagram. This is particularly true if combined fragments are
nested. For example, the use of a single alternative fragment that includes three alternative
interaction sequences models results in three possible executions of the scenario.

In the case of an optional fragment, at least two potential executions of the scenario are
possible: one that occurs if the corresponding condition for the execution of the interaction
in the optional fragment is true, and another if the condition is false.

If one alternative within a combined fragment of the type "alternative" itself contains a
combined fragment of the type "optional", two potential sequences of the scenario are
possible with regard to the alternative interaction. In a similar way, this also applies to the
nesting of other types of fragments. Sequence diagrams that contain such combined
fragments therefore model several potential sequences of the corresponding scenario.

In this way, sequence diagrams can model related main, alternative, and exception scenarios
(termination scenarios) in an understandable way. In this case, main, alternative, and
exception scenarios are specified through a corresponding control flow of the scenario.
Figure 89 shows an example of the modeling of combined nested fragments.

<<SuD>>
:On-Board- :On-Board- Dispatch Dispatcher :Fleet
System 2 System 1 -Dispatcher ISP management
workstation
Break ) [Vehicle not available]

. Cancellation _
! N

Loop(0,3) Jcancellation not successful]

Order cahcellation

S

Acceptance

Figure 89: Modeling of combined nested fragments

5.5.4 Modeling assumptions of a scenario

Scenarios are typically based on a number of assumptions whose validity is assumed so that
the scenario can actually be executed in the way it is modeled. If scenarios are modeled in
sequence diagrams, the assumptions can be specified as textual annotations that are linked
to the related model elements within the scenario. Figure 90 shows a simple example of the
modeling of assumptions on which a scenario is based.
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Figure 90: Modeling of assumptions for a scenario

The relationship between model elements of the sequence diagram and the associated
assumptions is shown via a directed dependency relationship with the stereotype
<<assumption>> (cf. Section 1.8). As shown in the figure, the assumptions can relate to the
entire scenario or to single model elements within the scenario. The statement of such an
assumption is, for example, that the scenario can only be completed successfully if
":"MapServer" satisfies the related assumption.

This allows the exclusion of exception cases that do not contribute to the general
understanding of the scenario, for example.

5.6 Scenario modeling with communication diagrams

Figure 91 shows the model elements of UML communication diagrams which are used for
modeling scenarios. Communication diagrams also have an outer frame which contains the
name of the scenario modeled by the communication diagram in a register at the top left.

The name of the scenario typically has the keyword "cm" as a prefix, indicating that the
scenario is modeled by a communication diagram. A lifeline represents one instance of an

actor within the scenario. The naming of the lifeline follows the pattern instance name:type

name (e.g., Peter:Driver). A direct message exchange between two instances within the
scenario is modeled by a connecting line between these instances in the communication
diagram.
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Name Notation Explanation
Eie w Frame of the communication
diagram
. Lifeline of an actor
Name
Lifeline in the scenario
h Models a generic message
Message exchange exchange between actors
. . L Models the direction of
Direction of communication _— > a message exchange
Each message in a scenario
. is provided with a sequence
Message signature Sequence number: message  pumber corresponding to the
order of occurrence of
a message

Figure 91: Model elements of communication diagrams for modeling scenarios

Each message that is exchanged between instances within the scenario is annotated with a
message signature at the corresponding connecting line. The message signature consists of
the actual message and the sequence number of the message exchange in the scenario.
The direction of communication of a message is indicated by an arrow.

5.7 Examples of typical diagrams in the scenario view

With the help of various types of combined fragments, we can model complex interactions
between actors and between actors and the system under development. Table 4
summarizes typical uses of combined fragments in scenario modeling as well as the
consideration of scenarios within use cases.

Modeling of alternative sequences of Modeling of alternative extend Alt
messages between communication relationships between use cases at an
partners extension point

Modeling of optional messages Modeling of individual extend Opt
between communication partners relationships between use cases that

do not consider exception handling

Abstraction of a combined sequence Modeling of include relationships Ref
of messages, e.g., for controlling between use cases
complexity and improving readability
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Modeling of repetitions of messages Loop
between communication partners
within scenarios depending on

conditions
Modeling of exception handling in Exception handling via extend Break
scenarios relationships between use cases

Table 4: Typical uses of combined fragments in modeling scenarios

This sectionillustrates the use of the above types of combined fragments in the context of
scenario modeling based on typical excerpts from the scenario view of a dispatcher’s
workstation in transport management.

5.7.1 Modeling scenarios using sequence diagrams

Figure 92 and Figure 93 show an excerpt from the scenario view for a dispatcher’s
workstation in the form of two UML/SysML sequence diagrams. The sequence diagram
shown in Figure 92 illustrates the scenario "Provide replacement vehicle", which models the

interaction between the instances : On-Board System 2, :0n-Board System 1,

:Dispatcher Workstation, :Dispatcher, :Fleet Management and:Order acceptance.

These interactions have to take place so that a replacement vehicle can be provided. The
dispatcher workstation represents the software system under development; the other
communication partners in the scenario are instances of actors in the system context.

The scenario shown uses both basic model elements for scenario modeling with UML/SysML
sequence diagrams and advanced model elements: two repetition fragments (keyword
"loop") and a termination fragment (keyword "break"). The first repetition fragment models
that the dispatcher workstation attempts to send the transport documents a maximum of
three times. After the dispatcher workstation sends the transport documents, it waits for the
acceptance by the on-board system of the replacement vehicle (i.e., a synchronous
message). This interaction is executed as long as the condition "Acceptance not successful"
is true.

If the condition is false when entering the combined fragment, the corresponding interaction
in the combined fragment is no longer executed. The dispatcher workstation sends the
asynchronous message "Vehicle selection" to the dispatcher.
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Figure 92: Example of a scenario modeled through a sequence diagram

The termination fragment models that if the condition "Vehicle not available" is true, an
asynchronous message is sent from the dispatcher workstation to the dispatcher. It also
models the interaction to cancel the order between the dispatcher workstation and the on-
board system, which is repeated a maximum of three times.

If the condition "Cancelation not successful" is true when entering this fragment (i.e., the
cancelation was unsuccessful), the interaction within the repetition fragment is no longer
executed. If the termination fragment was entered, the scenario terminates after the
execution of the interaction within the termination fragment, meaning that the asynchronous
message "Dispatch data" is no longer sent from the dispatcher workstation to the order
acceptance.

Figure 93 illustrates the sequence diagram that models the scenario "Replacement order for
transport damage". It shows the interaction between the instances :0n-Board System 2,
:0n-Board System 1, :Dispatcher Workstation, :Dispatcher, :Fleet Management,

:0rder Acceptance and Customer, which has to take place so that a substitute delivery can
be notified in the case of transport damage. Various advanced model elements of scenario
modeling with sequence diagrams were used to model the scenario "Replacement order for
transport damage".

For example, the alternative fragment at the beginning models that if the electronic
message for transport damage occurs, the transport damage message is sent from the on-
board system of the vehicle to the dispatcher workstation which then sends a message
containing the damage information to the dispatcher.
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Alternatively, the transport damage message can reach the dispatcher in other ways. In this
case, the message about damage that has occurred is sent directly to the dispatcherin
another way (= Found message). The dispatcher then has to enter the necessary damage
information for further processing via the dispatcher workstation.

sd Replacement order for transport damage)

) . <<SubD>> . .
.gn;l?eona:rg— .gnsltSeone:rg :Dispatcher :Dispatcher marizleeer;ent acégr(tj:r:ce :Customer
Y Y workstation 9 P

alt [Electronic message] :

: ‘Transport damagje message :

| | . Damage info ;

e S e |

[Manuafl message] 3 Transport damage message ;

| Damage info |

Request travel history :

— 3

————————— > |

Request cargo data

————————— > Reguest replacement order 4

Order data ?—————————i——————————+—————————f
< : : :

ref
Provide replacement vehicle

opt | | Replacement transport data | [Premium customner]

Figure 93: Example of a scenario modeled using a sequence diagram

The reference fragment in the lower part of the sequence diagram documents that at this
position in the sequence of the scenario, the interaction of the scenario "Provide
replacement vehicle" (Figure 92) is included. The optional fragment at the end of the
sequence diagram describes that, within the scenario, the dispatcher workstation sends a
message with the replacement transport data to the customer and waits for a confirmation.
However, this only occurs if the condition "Premium customer" is true, that is, if the transport
customer is a premium customer. If this is not the case, the scenario terminates at the end of
the interactions of the included scenario "Provide replacement vehicle".

5.7.2 Modeling Scenarios using Communication Diagrams

Figure 94 shows an excerpt from the scenario view for a dispatcher’s workstation in the form
of a UML communication diagram which models the scenario "Provide replacement vehicle"
(see also Figure 92). It is obvious from the figure that communication diagrams are hardly
suitable for modeling complex interaction-based behavior of scenarios since this diagram
type does not have model elements that allow the modeling of "optional" or "alternative"
interaction sequences of scenarios.

122 | 133

Requirements Modeling | Handbook | © IREB




Moreover, communication diagrams do not have model elements that allow the abstraction
of parts of an interaction sequence by modeling these interactions in a different diagram to
which the parent diagram can reference.

Nevertheless, communication diagrams are advantageous if the focus is on the bilateral
exchange of messages between instances of a scenario.

Provide replacement vehicle )
‘Fleet 1:Request vehicle :Dispatcher
management 7:Vehicle booking
) ) 5:Vehicle selection
2:Available vehicles 6:Info acceptance
8:Confirmation booking
:Dispatcher
workstation
:On-Board- N
System 1 .
9:Dispatch data
4:Acceptance /‘ :Order
acceptance

‘/3:Transportation documents

:On-Board-

System 2 :Customer

Figure 94: Example of a scenario modeled using a communication diagram

If the requirements engineer wants to model a scenario which does focus on this bilateral
exchange of messages, the use of this type of diagram is beneficial. If necessary, sequence
diagrams may be used in addition to a communication diagram to model scenarios. This
might be the case, for example, if the focus is on modeling the properties of the bilateral
interfaces (human-machine and machine-machine) between the system under
development and the instances of actors.
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»= Object Management Group: OMG Systems Modeling Language (OMG SysML)
Language Specification v1.2. OMG Document Number: formal/2010-06-02.

= Object Management Group: OMG Unified Modeling Language (OMG UML),
Superstructure, Language Specification v2.41.

= Rumbaugh, J.; Jacobson, |.; Booch, G.: The Unified Modeling Language Reference
Manual, Addison Wesley, 2004.
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6 Glossary

This glossary is partly based ofn: Glinz, M.: A Glossary of Requirements Engineering
Terminology. Standard Glossary of the Certified Professional for Requirements Engineering
(CPRE) Studies and Exam, https://www.ireb.org/en/downloads/#cpre-glossary or
https://www.ireb.org/en/cpre/glossary/.

Action

Activity

Activity diagram

Actor

Aggregation

Alternative scenario

Association

Attribute

Main scenario

Class

Class diagram

Communication diagram

Composition

In requirements modeling, a Tfunction of the Tsystem that can-
not be decomposed any further from a Trequirements per-
spective; a primitive Tfunction.

In requirements modeling, a complex Tfunction of the system
under development that, from a requirements perspective, can
be decomposed into further Tactivities or Tactions.

A diagram type in UML which models the flow of Tactionsina
Tsystem or in a Tcomponent, including Tdata flows and areas
of responsibility where necessary.

A person or a technical system in the context of a system which
interacts with the system under development.

Special type of association for modeling part/whole relation-
ships.

A Tscenario which describes an alternative sequence of Tinter-
actions, related to the basic scenario, for achieving the tech-
nical added value.

A relationship between model elements—for example, a rela-
tionship between T°classes in a T°class diagram.

A characteristic property of an Tentity or an object. Attributes
are defined on a type level, that is, entity types (ER diagrams) or
classes (class diagram).

A scenario which, in relation to a specific outcome (e.g., a spe-
cific added value), describes the predominantly occurring se-
quence of interactions for achieving this result.

Represents a set of Tobjects of the same kind by describing
the structure of the objects, the ways they can be manipulated,
and how they behave.

A diagrammatic representation of a T class model or a part of a
class model.

A diagram for modeling the behavior in the interaction-related
Tview which considers a logically related set of TMinteractions
between objects and/or communication partners which fo-
cuses on the visualization of bilateral Tinteractions between
communication partners. The causal order of TNinteractions is
indicated here by sequence numbers.

Special type of Tassociation for modeling part/whole relation-
ships.
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Context diagram

Context view

Control flow

Data flow

Data flow diagram

Data type

Diagram

Diagram type

Event

Exception scenario

Function (of a system)

Generalization

Instance scenario

1. A diagrammatic representation of a Tcontext model.
2. In TStructured Analysis, the context diagram is the root of
the data flow diagram hierarchy.

A Trequirements view which focuses on the demarcation of the
Tsystem boundary from the T context, that is, on the consider-
ation of the Tactors or neighboring systems of the T'system
under development and the interfaces between the system and
these neighboring systems. In the context view, often only the
Toperational context of the system under development is
modeled by Tcontext diagrams.

Temporal or logical sequence of, for example, Tfunctions,
Tactions, or Tactivities.

Representation of information (in a Tdata flow diagram or Tac-
tivity diagram) that is exchanged between the T*system context
and/or TMunctions of the Tsystem. (Data in motion, inputs and
outputs of TMfunctions).

A diagram modeling the TMunctionality of a T'system or com-
ponent using processes (also called activities), data stores, and
data flows. Incoming data flows trigger processes which then
consume the received data, transform it, read/write persistent
data held in data stores, and then produce new data flows
which may be intermediate results that trigger other processes
or final results that leave the system.

Specification of a complex information structure for the defini-
tion of Tattributes.

Graphical description of a coherent set of properties of the ob-
ject under consideration. Instance of a specific T diagram type.

Defines a class of "similar" Tdiagrams and is defined by a
Tmodeling language.

Timeless event that characterizes the occurrence of a condi-
tion, the termination of an Taction or Tactivity, or the arrival of
a T data flow or message.

A Tscenario describing a sequence of Tinteractions that must
be executed if a defined exception event has occurred during
operation of the Tsystem. In requirements engineering, Tex-
ception scenarios are often specified complementary to the
Tmain scenario and/or Talternative scenarios for the con-
trolled treatment of scenarios.

In requirements models, a generic term for use cases, Tactivi-
ties, or Tactions that are required in a requirements specifica-
tion for the Tsystem.

A concept for the abstraction of common properties such as
Tclasses, in which the commmon properties are merged into a
generalized concept and the differences are depicted in re-
spective specialized concepts.

A T scenario in which communication partners and interactions
are considered at the instance level.
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Interaction

Interaction-based view

Model

Model element

Modeling construct

Modeling language

Object
Operational context

Pragmatic quality

Pragmatics

Process flow

Requirements view

Requirements model

Role

Scenario

Aninteraction is a flow of tangible (e.g., money) or intangible
things (e.g., information) between two or more communication
partners.

The interaction-based view is a special Tdynamic view of the
Trequirements of the Tsystem under development in which the
behavior is observed through interactions between communi-
cation partners.

Abstracting image of an existing reality or an example for a
planned reality (e.g., a system).

An atomic component of a diagram or a textual supplement to
the requirements model. A model element typically represents
a single requirement for the system.

An atomic component of a diagram type (e.g., class, associa-
tion, state, or state transition).

A Tlanguage for expressing Tmodels of a certain type. May be
textual, graphic, symbolic, or a combination thereof.

An occurrence/instance of a class.

The part of the T'system context with which the T'system has a
functional interaction during operation—for example, users,
other systems, technical or physical processes, or business
processes.

Extent to which a Tdiagram/T"model serves its intended pur-
pose in terms of the adequacy of abstraction.

Part of the definition of a Tmodeling language which de-
scribes the intended use and possibly also describes the form
and specific purpose of abstraction in order to fulfill the in-
tended use as well as possible.

See TControl flow

Defines, for reasons of complexity control, a specific abstrac-
tion of the requirements of a system in which only certain facts
(e.g., Tstates and Tstate transitions of the system under devel-
opment) have been considered and others have deliberately
not been considered. Typically, the different views of the re-
quirements can be combined into an overall model of the re-
quirements.

A Tmodel that has been created with the purpose of specifying
Trequirements. Consists of diagrams of various requirements
views and textual additions.

Designation of a class from the perspective of the other T°class
for an Tassociation.

An Tinteraction between communication partners (often be-
tween the T'system under development and Tactors in the sys-
tem context) that leads to a desired (or possibly unwanted) re-
sult. In requirements engineering, the added value for an Tactor
in the system context is often seen as an essential result of a
Tscenario.
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Semantics Part of the definition of a modeling language; defines
the general meaning of the notation elements (i.e., generally >
What is the meaning of a class in a class diagram? Not - What
is the meaning of the class "customer" in the class diagram?).

Semantic quality Extent to which a Tdiagram/T*'model reflects the specific view
of the object under observation correctly and completely.

Sequence diagram A diagram type in TUML which models the interactions be-
tween a selected set of objects and/or Tactors in the sequen-
tial order in which those interactions occur.

Signal An Tevent in or outside the system which is relevant to the
Tsystem under development.

State A state is a summary of certain conditions that apply during a
time interval for a 1" system or subsystem.

State diagram The graphical representation of a state machine.

State machine Through a summary of T'states and TMransitions between these

states, a state machine describes the behavior or part of the
behavior of the object considered (e.g., an Tactor, a TMunction,
a Tuse case, or the Tsystem).

State machine diagram See T'State diagram
Statechart See State machine
Syntactic quality Extent to which the 1" diagram/Tmodel satisfies the underlying

syntactic rules.

Syntax Part of the definition of a Tmodeling language that defines the
way the available notation elements in the modeling language
can be combined (the grammar).

System Entity with defined borders and an interface through which the
entity interacts with its environment (context). Typically con-
sists of a set of related components.

System boundary Demarcates the T'system from its context (e.g., via responsibili-
ties and exclusions).

System context Aspects outside the system that are relevant for the definition
of the Prequirements of a system and their relationships to
each other and to the system under development. The system
context includes the Toperational context, that is, the part of
the environment with which the operational system is in a func-
tional interaction.

System environment See Operational context

System under development The system considered in the context of requirements engi-
neering or requirements modelling.

System under study A system to be considered or analyzed in the context of system
analysis. Not necessarily the object of development.

Transition A change from one T'state to another initiated by a trigger.

Trigger The processing of a signal as an actuator for a transition.

Type scenario A scenario in which communication partners and interactions

(1) are considered at the type level. Scenarios (1) within a use
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case specification are often at the type level, that is, they con-
sider types of communication partners and types of interac-
tions.

Use case A description of the possible interaction between an actor and
the system which, when executed, yields an added value.

Use case diagram A diagram type of UML which allows the modeling of Tactors
and Tuse cases of a system. The line between actor and use
case represents the Tsystem boundary. Use case specification:

The textual description of a use case.

Use case scenario A possible sequence (trace) of the interactions within a use
case. The possible sequences are represented by the main, al-
ternative, and exception scenarios of the use case.

View An abstract representation of the T*system under develop-
ment, consisting of one or more T diagrams (with textual addi-
tions). Views can be disjoint or overlapping. Deliberate overlaps
are applied for quality assurance of the models (to produce
consistency by viewing the system from several perspectives).
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/7 List of Abbreviations
AD Activity diagram

BPMN Business Process Modeling Notation

CM Communication diagram

CPRE Certified Professional for Requirements Engineering
CRM Customer relationship management

DFD Data flow diagram

EPC Event-driven process chain

ER Entity relationship

FMC Fundamental modeling concepts

IREB International Requirements Engineering Board
ISO International Organization for Standardization
IT Information technology

ITU International Telecommunication Union

OMG Object Management Group

RE Requirements engineering
SA Structured Analysis

SD Sequence diagram

SuD System under development
SuS System under development

SysML System Modeling Language
UML Unified Modeling Language
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