

2.2.0 | July 23, 2024

Handbook

Requirements Modeling

Practitioner | Specialist

Thorsten Cziharz

Peter Hruschka

Stefan Queins

Thorsten Weyer

Requirements Modeling | Handbook | © IREB 2 | 133

Terms of Use

This handbook, including all its parts, is protected by copyright law. With the consent of the

copyright owners and following copyright law, the use of the Handbook is permitted—unless

explicitly mentioned it is not permitted. This applies in particular to reproductions,

adaptations, translations, microfilming, storage and processing in electronic systems, and

public disclosure.

Training providers may use this Handbook as a basis for seminars and training provided that

the copyright holder is acknowledged and the source and owner of the copyright is

mentioned. In addition, with the prior consent of IREB, this Handbook may be used for

advertising purposes.

Any individual or group of individuals may use this Handbook as a basis for study, articles,

books or other derived publications provided that the copyright holder is acknowledged and

the source and owner of the copyright is mentioned.

Acknowledgements

Our thanks to Torsten Bandyszak, Sibylle Becker, Nelufar Ulfat-Bunyadi, Ruth Rossi,

Tracy Duffy, and Stefan Sturm for their support in the preparation of the manuscript.

This Handbook was produced by (in alphabetical order):

Thorsten Cziharz, Dr. Peter Hruschka, Dr. Stefan Queins, and Dr. Thorsten Weyer

Copyright © 2016-2024 Handbook of Requirements Modeling According to the IREB

Standard" is with the authors listed. Rights are transferred to the IREB International

Requirements Engineering Board e.V.

The compilation of this Handbook was supported by

Translated from German by:

Ed van Akkeren, Lars Baumann, Jan Jaap Cannegieter, Colin Hood, Peter Hruschka,

Matthias Lampe, Ellen Leutbecher, Hans van Loenhoud, Piet de Roo, Stefan Staal, and

Johan Zandhuis

Foreword

This Handbook complements the syllabus of the CPRE Requirements Elicitation module.

This Handbook is intended for training providers who want to offer seminars or training on

the CPRE Requirements Elicitation Practitioner and/or Specialist according to the IREB

standard. It is also aimed at training participants and interested parties who want to get a

detailed insight into the content of this module.

This Handbook is not a substitute for training on the topic. The Handbook represents a link

between the Syllabus (which lists and explains the learning objectives of the module) and the

broad range of literature that has been published on the topic.

https://www.sophist.de/en/start/
https://sse.uni-due.de/en/welcome/

Requirements Modeling | Handbook | © IREB 3 | 133

The contents of this Handbook, together with references to more detailed literature, support

training providers in preparing training participants for the certification exam. This

Handbook provides training participants and interested parties an opportunity to deepen

their knowledge of Requirements Engineering in an agile environment and to supplement the

detailed content based on the literature recommendations. In addition, this Handbook can

be used to refresh existing knowledge about the various topics of requirements elicitation,

for instance after having received the Requirements Elicitation Practitioner or Specialist

certificate.

Suggestions for improvements and corrections are always welcome!

E-mail contact: info@ireb.org

We hope that you enjoy studying this Handbook and you will successfully pass the

certification exam for the IREB CPRE Requirements Modeling Practitioner or Specialist.

More information on the IREB CPRE Requirements Elicitation can be found at:

http://www.ireb.org.

mailto:requirementsmodeling.guide@ireb.org
http://www.ireb.org/

Requirements Modeling | Handbook | © IREB 4 | 133

Version history

Version Date Comment

1.1 September 2015 First release of the English version of the Handbook based

on the original German version (1.0). Contains some minor

changes compared to the original German version v1.0.

1.2 May 2016 Minor bugfixing and language polishing.

1.3 August 2016 Content on the topic “modeling of association classes”

added and minor corrections.

2.0.0 July 2022 Inconsistencies between German and English version

fixed. In detail:

▪ Chapter 3.5.3.1 misspelling and numeration figure 1,2,3 in 23,

24, 25

▪ Chapter 3.5.3.2 inserted

▪ Chapter 3.7.1 text insertet and a new reference

▪ Chapter 4.3 paragraph inserted

▪ Chapter 4.3.2.1 text inserted

▪ Chapter 4.3.7 numeration figure 47 in 50

▪ Chapter 4.4.4.6.1 text fixed

▪ Formatting

▪ Disclaimer: Gender-sensitive text formulation

▪ Addition to the references

▪ Inclusion of the Advanced Level split in Practitioner and

Specialist

2.1.0 May 2024 New Corporate Design implemented, term “Advanced

Level” eliminated, update terms of use and foreword

2.2.0 July 2024 Figure 43 complemented by further the main model

elements of activity diagrams (terminator, object node,

pin, signal transmitter, event receiver, time event). Chapter

4.3.7 wrong term "timer event" event fixed.

Requirements Modeling | Handbook | © IREB 5 | 133

Table of Contents

1 Basic principles ... 8

1.1 The benefits of modeling requirements 8

1.2 Applications of requirements modeling 9

1.3 Terms and concepts in requirements modeling 10

1.4 Requirements models ... 12

1.5 Views in requirements modeling 15

1.6 Views of the dynamic view in requirements modeling 17

1.7 Adapting modeling languages for requirements modeling 19

1.8 Integrating textual requirements in the requirements model 19

1.9 Documenting dependencies between model elements 20

1.10 The benefits of requirements modeling 21

1.11 The quality of requirements models 23

1.12 Further reading ... 25

2 Context modeling .. 26

2.1 Purpose ... 26

2.2 Context diagrams .. 26

2.3 Other types of context modeling 29

2.4 Further reading ... 30

3 Information structure modeling 31

3.1 Purpose ... 31

3.2 Modeling information structures 31

3.3 Simple example .. 32

3.4 Modeling classes, attributes, and data types 33

3.5 Modeling relationships .. 44

Requirements Modeling | Handbook | © IREB 6 | 133

3.6 Modeling generalizations and specializations 53

3.7 Other modeling concepts ... 55

3.8 Further reading ... 56

4 Dynamic views ... 57

4.1 Dynamic views of requirements modeling 57

4.2 Use case modeling ... 58

4.3 Data flow-oriented and control flow-oriented modeling of requirements

 .. 66

4.4 State-oriented modeling of requirements 82

4.5 Further reading .. 103

5 Scenario modeling 104

5.1 Purpose .. 104

5.2 Relationship between scenarios and use cases 105

5.3 Approaches to scenario modeling 106

5.4 Simple examples of a modeled scenario 106

5.5 Scenario modeling using sequence diagrams 108

5.6 Scenario modeling with communication diagrams 118

5.7 Examples of typical diagrams in the scenario view 119

5.8 Further reading .. 124

6 Glossary ... 125

7 List of Abbreviations 130

8 References ... 131

Requirements Modeling | Handbook | © IREB 7 | 133

IREB CPRE module Requirements Modeling

In recent years, the scope and complexity of typical software-based systems have

increased significantly. This is reflected directly in the number of requirements arising and

the complexity in terms of the mutual dependencies between requirements. All forecasts

about the expected future increase in the size and complexity of software-based systems

predict that the number of requirements and the complexity of interdependencies will

continue to increase dramatically in the future. This becomes clear, for example, if we

consider the development trends in the field of business information systems in terms of the

Internet of Services (IoS) and Internet of Things (IoT) or the development in the field of

intelligent embedded systems. Both trends are paving the way for a somewhat revolutionary

penetration of the physical world by dynamic networked software-based systems, referred

to as "cyber-physical systems".

The first thing to note is that requirements are taking a central role in the development

process of software-based systems. What is more, the extent and complexity of the

requirements of a system are becoming more difficult to handle. Accordingly, the

specification of requirements has already reached its limits in many areas if this is done only

in natural language (i.e., in text form). In many cases, this has a lasting negative effect on the

development projects concerned. Due to the many advantages of using graphical models

with respect to readability, controlling complexity, automatic analyzability, and the

processing of extensive and complex situations, the use of graphical modeling of

requirements is increasing rapidly.

The IREB Certified Professional for Requirements Engineering module Requirements

Modeling provides the tools for specifying requirements of large and complex systems using

standardized and widely used modeling languages. Comprehensive tool support is available

for these modeling languages—from freeware tools to powerful commercial CASE tools,

there is great potential for automation and for seamless integration with other tools used in

development processes (e.g., for project and test management).

More information on the IREB Certified Professional for Requirements Engineering module

Requirements Modeling can be found at: http://www.ireb.org.

http://www.ireb.org/

Requirements Modeling | Handbook | © IREB 8 | 133

1 Basic principles

Requirements play a fundamental role in the life cycle of systems. In particular, the Fehler!

Textmarke nicht definiert.development disciplines (such as architecture, design,

implementation, and testing) are based mainly on the requirements of the system as

specified during requirements engineering and are largely dependent on the quality of these

requirements. In addition to the development disciplines, activities such as maintenance and

service right up to decommissioning of the system and development of upstream activities

(e.g., assessment of the risks and costs of the development project) depend highly on the

requirements and their quality.

According to the IREB Glossary of Requirements Engineering Terminology [Glin2011], a

requirement is (1) a need that is perceived by a stakeholder or (2) a capability or property that

a system must have. Requirements engineering is concerned with ensuring that the

requirements of the system under development are formulated as completely, correctly,

and precisely as possible, thereby providing optimal support for the other development

disciplines and activities in the life cycle of the system.

1.1 The benefits of modeling requirements

Using a highly simplified example, Figure 1shows the difference between textual and

modeled requirements. The left-hand side shows four textual requirements which specify

necessary behavior in relation to the input of data via an entry screen. The right-hand side

shows a requirements diagram in which the corresponding requirements are modeled.

Figure 1: Textual requirements vs. modeled requirements

Req-1: The system shall display the entry
mask

Req-2: After the action "Show entry mask"
is completed, or after the action "Show
error" is completed, the system shall offer
the user the option to enter data

Req-3: After the action "Enter data" is
completed and if the data is ok, the system
shall store the data

Req-4: After the action "Enter data" is
completed and if the data is not ok, the
system shall issue an error message

Textual requirements Modeled requirements

Display entry
mask

Enter data

Issue error
message

Store data

Requirements Modeling | Handbook | © IREB 9 | 133

As this simple example already indicates, modeling the requirements shows the necessary

behavior of the system in a more structured and understandable way. The reader can follow

the process step by step. Furthermore, this simple example clearly shows that the

interaction of the various aspects of the required system behavior are explicitly visible in the

modeled requirements, whereas this information is only implicitly present in the textual

requirements (see also [Davi1993]).

Typically, software systems today comprise significantly more complex processes, meaning

that the associated textual requirements are very extensive and complex. It is then difficult

for the reader to understand the interactions within such complex processes solely on the

basis of textual requirements.

1.2 Applications of requirements modeling

Today, there are various applications for modeling requirements in requirements

engineering, as explained in this section:

1.2.1.1 Modeling requirements as a means of specification

In this case, requirements diagrams replace textually specified requirements. This means

that requirements diagrams are used as the primary means for specifying the system

requirements or part of the system requirements. The requirements diagrams can (and

should) be supplemented by textual requirements or textual explanations, specifically when

a text is more compact or easier to handle than diagrams.

If all requirements still need to be available in textual form (e.g., due to contractual conditions

or certification requirements), they can be generated from the requirements models—for

example, using templates for converting requirements diagrams into text form.

1.2.1.2 Modeling existing textual requirements for the

purpose of testing

In this case, a requirements diagram is created for a logically coherent set of textually

specified requirements which, for example, specify a necessarily complex system behavior.

The purpose of this diagram is to check the comprehensibility of textual requirements or to

uncover inconsistencies or omissions in the textual requirements. Any defects uncovered are

then corrected in the textual requirements.

1.2.1.3 Modeling existing textual requirements for clarity

In this case, for example, modeled requirements are used to represent extensive and

complex relationships that affect the behavior of the system. However, this redundant form

of the specification can lead to significant problems with regard to contradictions between

textually specified requirements and modeled requirements.

Requirements Modeling | Handbook | © IREB 10 | 133

1.3 Terms and concepts in requirements modeling

Using the general terms and concepts found in system modeling, the following explanation

looks at the terms and concepts relevant for modeling requirements as well as the important

relationships between the various terms and concepts. 2 shows a semantic network of the

basic terms and concepts relevant for requirements modeling. Terms that are already

defined in the IREB Glossary of Requirements Engineering Terminology are labeled with ↑.

The system of terms is based on various definitions in the IREB Glossary of Requirements

Engineering Terminology [Glin2011] and complements this glossary with terms and concepts

that are particularly essential for requirements modeling. A model is regarded as an

abstracting image of the properties of a system.

To make the scope and complexity of the modeling manageable, various views of the

system (and its environment) and the properties of the system in relation to each specific

view are represented through diagrams and supplementary textual model elements. Each

diagram is based on a specific diagram type, which in turn is defined via a modeling language

(more precisely by syntax, semantics, and pragmatics). The underlying modeling language of

a diagram type defines the set of modeling constructs that can be used to construct the

corresponding diagrams (e.g., class and association for the construction of class diagrams).

In a modeling language, graphical and/or textual notations are defined for the modeling

constructs.

Requirements Modeling | Handbook | © IREB 11 | 133

Figure 2: Conceptual network of the core terminology in requirements modeling

A diagram consists of a set of model elements, each representing a specific graphical

modeling construct of the modeling language of the associated diagram type (e.g., class:

"person", association: "is employed by", class: "company").

Diagrams and graphical model elements can be supplemented by textual model elements

(e.g., textual description of the trigger of a use case) which express specific textual modeling

constructs (e.g., a section of a use case template). The graphical and textual model elements

form the atomic constituents of models.

A requirements model is a specific type of model (more precisely: a type of system model)

used to specify the requirements of a system with the aid of diagrams and textual

supplements.

↑model

↑diagram

diagram type

↑modeling language

graphical model
element

↑view

↑syntax ↑semantics pragmatics

modeling construct

11

1

1

is instance of

depicts

is represented

abstract
representation

has

1..*

is defined by

1..*

defines

1..*

defines

↑system

1..*

consists of

↑requirement

textual model
element

is formed by
refers to

1..* 1..*

1

1

0..*

0..*

1

*

1..*

is represented

specifies

↑requirements model

is a

is formed by

1..*

consists of

*

represents

1
1 0..1

1..*

1

0..*

graphical notation
element

textual notation
element

0,1 0,1

represented
by

represented
by

model element

is a

is a

is instance of

0..*

1..*

11

refers to
refers to

0..*

0..*

Requirements Modeling | Handbook | © IREB 12 | 133

1.4 Requirements models

The individual requirements of a requirements model are represented by model elements

that are specified within requirements diagrams and via textual additions to these diagrams.

1.4.1 Modeling languages for requirements modeling

A number of diagram types and associated modeling languages are available for

requirements modeling. The selection of the diagram type to be used in each case depends

on the purpose, which thus determines which specific requirements of the system should be

documented and which persons are the "target audience" for the requirements models.

The relevance of a diagram type often also depends on the type of system (e.g., operational

information system or embedded system) and partly on the application domain (e.g., banks,

insurance companies, automation technology, vehicle/aircraft industry) for which the

system is being developed. Often (e.g., in embedded systems), requirements engineering

focuses on the reactive behavior of the system. This is because the size and complexity of

the required behavior of today's embedded systems are mainly determined by the

necessary reactivity of the systems. Therefore, state machine diagrams of the OMG SysML

[OMG2010a], OMG UML [OMG2010b], or MATLAB/Simulink Stateflow diagrams are used for

requirements modeling when developing embedded systems. The state machine diagrams

can be supplemented by complementary diagrams, such as use case diagrams, scenarios,

or activity diagrams. In contrast, business information systems (e.g., software for processing

loan applications) usually have no extensive and complex reactive behavior.

Therefore, when modeling requirements for such systems today, it is primarily diagram types

that allow the modeling of extensive and complex information structures (e.g., UML class

diagrams) that are used. Other diagram types used are those that allow the modeling of

process-oriented aspects, such as event-based process chains [[Sche2000]] or BPMN

diagrams [OMG2011] as part of the business analysis, as well as UML activity diagrams—for

example, to model requirements with reference to the required flow logic of the system

under development. Here again, other complementary types of diagrams can be used—for

example state machine diagrams—in order to model the necessary requirements in terms of

reactivity of the system.

In addition to specific approaches such as event-driven process chains (EPCs) or BPMN,

which are often used in the context of business analysis or MATLAB/Simulink diagrams in

requirements modeling for embedded systems, the "universal" modeling approaches UML

and SysML are very often used for modeling requirements.

UML version 2.4 distinguishes between 14 different diagram types, seven of which are used

for structure modeling and seven diagram types are used for behavior modeling. Note that

the diagram type "profile diagram" is used to document language profiles (i.e., adaptations

and extensions to the modeling language) and not, like the other diagram types, for actual

system modeling.

SysML was designed specifically for modeling in the development of complex systems and

is a subset of UML extended with special diagram types and notation elements.

Requirements Modeling | Handbook | © IREB 13 | 133

The corresponding extensions relate to new structure diagrams (internal block diagrams,

block definition diagrams, parametric diagrams). SysML no longer contains the diagram type

"class diagram". With regard to the behavior diagrams, no new diagram types are introduced

in SysML; instead, the behavioral diagram types of UML are used, whereby SysML activity

diagrams differ from the UML activity diagrams with respect to syntax and semantics.

1.4.2 Requirements modeling versus system design

In practice, it is sometimes difficult to distinguish between requirements diagrams and

design diagrams (see, e.g., [BoRJ2005]). The cause is frequently seen in the fact that the

same universal modeling languages are used for requirements modeling, such as UML or

SysML. In fact, the cause in most cases is that the alleged requirements diagrams specify

not requirements but rather the system design, or that requirements and design are mixed in

diagrams.

The latter is the case, for example, when the required system behavior is already modeled in

relation to individual, specific design decisions in a diagram and these design decisions are

not specified by boundary conditions (constraints), for example, in terms of the technology

to be used (see Section 1.5).

1.4.2.1 Requirements diagrams and design diagrams in system

analysis

As part of the system analysis, it is often the case that both design diagrams and

requirements diagrams are created. The first step in system analysis is typically the analysis

of an existing system. The "system" can be anything from an individual software system to

complex socio-technical systems where a variety of software systems and people (or roles)

cooperate in order to fulfill an overarching purpose, as is the case, for example, in complex

business information systems.

The system analysis itself can be performed from different perspectives, such as function-

centered or data-centered (see, e.g., [DeMa1979] and [ShMe1988]). In the context of system

analysis, the system under development is often initially analyzed (e.g., the system in

operation and the associated documentation) and modeled in the form of diagrams as it is

perceived. In this case, the technical incarnation of the system is modeled first, that is, the

concrete technical solution as it is in operation (see [McPa1984]).

The corresponding model of the incarnation is then analyzed in terms of the underlying

technical aspects, meaning that it is abstracted from the concrete technical implementation

to identify the business core. The result of this activity is a model of the functional

requirements of the system under development.

Both models—the incarnation model (i.e., the technical solution) and the model of the

functional requirements (also referred to as the essence model)—are factual models, that is,

models that document the existing properties of the system under development (SuD). As

part of the system analysis, a target model is then often formulated based on the model of

the functional requirements.

Requirements Modeling | Handbook | © IREB 14 | 133

This target model specifies which technical requirements are to be implemented by a newly

developed system or as part of a change project. These technical requirements are then

incorporated back into the development process. In typical systems analysis processes,

therefore, both requirements diagrams and design diagrams are created. The goal of system

analysis is to model the functional requirements of the system under development.

1.4.2.2 Relationship between requirements models and design

models

During the development of complex software systems, requirements and design are often

developed with very strong links. This close link between the development of requirements

and the definition of a solution in the form of a system design is illustrated with the twin

peaks model shown in Figure 3 (cf. [Nuse2001]).

Figure 3: Relationship between requirements and design

As illustrated in the figure, during the development of complex software systems, there is a

strong interaction between the definition of requirements and the system design. Typically,

the first step is to produce a set of more general requirements for the complete system. This

set of requirements is then the basis for the definition of the preliminary system architecture

which satisfies these requirements.

During the transition between requirements definition and system design, design decisions

have to be made and the given conditions for the design (design constraints) have to be met

(e.g., the specification of a style of architecture to be used). Starting from the initial system

architecture, which consists for example of (logical) subsystems, the requirements for the

individual subsystems can be specified. If sufficiently detailed requirements are available,

the initial system design is refined.

As an example, Figure 3 illustrates the relationship between the requirements and design of a

technical system (complete system) which is initially abstracted from the separation

between hardware and software. The requirements for the actual software of the system are

first specified on the third system level.

Problem view Solution view

Requirements models Design models

Design decisions

Design constraints

e.g. Total system

e.g. Subsystems

e.g. Software

Dissection planes of

the total system

Problemsicht Lösungssicht

Anforderungsmodell Entwurfsmodell

Entwurfsentscheidungen

Entwurfs-Contraints

z.B. Geschäftsprozess

z.B. Automatisierte Teil

z.B. Applikation

Ebenen

Degree of solution

relatednesst

High

Low

Requirements Modeling | Handbook | © IREB 15 | 133

For pure software development projects, the software to be developed is classified at the

highest system level. On the lower system levels, logical components and software parts are

then considered (see, e.g., [ISO26702], [HaHP2001]).

In this approach, the design decisions at one level significantly affect the definition of

requirements at the next lower level of detail—that is, the requirements of the next level are

based on the design decisions previously made which in turn represent a framework for the

specification of requirements at the next lower level. Even though there is a close link

between requirements and architectural design, within the scope of requirements modeling

it is all the more important to strictly separate the requirements model from the design

model and to establish the relationships through appropriate dependency relationships (see

Section 1.9). More details can be found in [Pohl2010], [BDH2012], and [HaHP2001].

1.5 Views in requirements modeling

The foundation level of the Certified Professional for Requirements Engineering

distinguishes between three views in the modeling of functional requirements

(cf. [PoRu2011]), namely:

1. the static-structural view

2. the behavioral view

3. the functional view

Building on these basic views of requirements modeling, a more differentiating set of views is

presented below (see Figure 4).1

1 The creation of views can be established in various ways within the scope of requirements engineering. For example, views can

be defined that address specific concerns of stakeholders. A "user view" can be defined of the requirements of the system,

for example. This view considers (models) only those requirements that directly concern the use of the system under

development. In a "maintenance engineering view", only those system requirements that relate directly to the maintenance of

the system would be considered. Various "philosophies" for establishing views can be applied in combination to control the

scope and complexity of requirements modeling. It is conceivable, for example, that the user view and the maintenance

engineering view are each considered from an information structure view and a dynamic view. Through common concepts or

mapping relationships, the requirements models of the different views can then be integrated into an overall model.

Requirements Modeling | Handbook | © IREB 16 | 133

Figure 4: Views in requirements modeling in the IREB module Requirements Modeling

A key challenge in requirements engineering is to understand the context of the system

under development (e.g., the software to be developed). This includes the knowledge of what

other systems are related to the system under development in an operational context,

properties of these external systems, as well as knowledge about which roles, people

interact with the system and which properties they have that are relevant for the system.

Context modeling is typically used to identify the necessary interfaces between the system

under development and its context.

1.5.1 Information structure view

The information structure view focuses on requirements of the system under development

which are related to static and structural aspects of the functionality, such as the structure

of data to be processed by the system. Typical diagram types used here are class diagrams

or various dialects of entity-relationship diagrams (e.g., according to Chen or in the FMC

approach).

1.5.2 Dynamic view

The dynamic view focuses on those requirements of the system under development which

are related to dynamic aspects of the functionality (see, e.g., [BoRJ2005]). For the purposes

of the foundation level of the Certified Professional for Requirements Engineering, the

dynamic view of the requirements of a system is formed through the behavioral and

functional views.

Requirements View

Information-Structure View Dynamic View Quality View

Use Case View

Data-Flow-oriented View

Control-Flow-oriented View

State-oriented View

Scenario View

Class Diagram (IREB AL)

Use Case Diagram
(IREB AL)

Data-Flow Diagram (IREB AL)
Activity Diagram with Object-Flow / Data-Flow

(IREB AL)

Activity Diagram (IREB AL)
Event-driven Process Chain

Business Process Modeling Language

Sequence Diagram (IREB AL)
Communication Diagram (IREB AL)

Message Sequence Charts according to ITU Z.120

State Machine Diagram (IREB AL)
Finite Automaton

Statecharts

Simulink Stateflow

Simulink Block Diagram

Entity-relationship Diagram

Constraints View
boundary conditions

Context View

Requirements Modeling | Handbook | © IREB 17 | 133

To model the requirements in the dynamic view, in Requirements Modeling, the dynamic

view is strongly differentiated (see Section 1.6). Typical diagram types used for requirements

modeling here are use case diagrams, activity diagrams, state machine diagrams, data flow

diagrams, and sequence diagrams.

1.5.3 Quality view

The quality view focuses on those requirements of the system which relate to necessary

qualities of the system under development or individual system components. Although there

are a number of approaches for model-based specification of quality requirements

currently being researched (see, e.g., [HKDW2012]), in practice today quality requirements

(regarding, for example, performance, reliability, real-time behavior, safety, or robustness)

are still specified within requirements models mainly by textual supplements or as an

annotation to specific model elements in requirements diagrams (see, e.g., [RiWe2007]).

A detailed taxonomy of requirements in the quality view (quality requirements) can be found

in ISO 25010 [ISO25010]. Detailed information on the documentation of requirements in the

quality view can be found in [Pohl2010].

1.5.4 Constraints view

The constraints view focuses on requirements in terms of boundary conditions (i.e., external

constraints) to be adhered to by the system under development (or the associated

development process) (see [ISO29148]). Typical boundary conditions include organizational,

regulatory, or technological conditions.

Technological constraints occur, for example, in the form of design constraints (e.g.,

service-based or client-server) which define a specific architectural style for the system

under development.

Such constraints are often documented in textual form (or by textual additions in

requirements models), whereas specific types of diagrams such as class diagrams or

component diagrams are often also suitable for documenting organizational or technical

constraints. Detailed information about boundary conditions can be found in [RoRo2006],

for example.

1.6 Views of the dynamic view in requirements modeling

The dynamic view in requirements modeling considers those requirements which relate to

the chronological-logical relationships in the required behavior of the system. Today's

business information systems—and intelligent embedded systems even more so—have a

very extensive and complex structure of such relationships. These relationships have to be

elicited and analyzed and specified in the requirements as part of requirements engineering.

To make the scope and complexity of such dynamic relationships in the system behavior

manageable within requirements modeling, the dynamic view is divided into views.

Requirements Modeling | Handbook | © IREB 18 | 133

The integration of these views leads to an overall model of the dynamic view of the

requirements of the system under development, as shown in Figure 4.

1.6.1 Use case view (user functions and dependencies to the

system context)

Within the dynamic view, the use case view considers the high-level system user functions

and their relationships to actors in the system context. A high-level user function

characterizes a functionality that the system must offer for an actor within the context to

gain a benefit (added value). Use case diagrams are typically used for modeling here.

1.6.2 Data flow-oriented view (system functions and data

dependencies)

Within the dynamic view, the data flow-oriented view considers the functions that are

perceptible at the system interface, as well as the data dependencies between these

functions and with actors in the system context. The functions can also be analyzed at

various levels of granularity, for example, from high-level user functions (e.g., use cases) to

finely detailed technical functions, the interaction of which implements the functionality of

the use case. Typical diagrams used here are data flow diagrams (e.g., according to

DeMarco [DeMa1979]) and activity diagrams that focus on the object flow between actions.

1.6.3 Control flow-oriented view (process flow logic)

Within the dynamic view, the control flow-oriented view considers the processes (or

activities or actions) perceptible at the interface of the system and their flow logic. The

control flow relationships are considered in processes that occur, for example, in the form of

sequential, alternating, or concurrent sequences.

UML or SysML activity diagrams are typically used to model the control flow-oriented view.

A special feature with regard to business analysis is that (extended) event-driven process

chains or BPMN diagrams are also used for modeling at business process level.

1.6.4 State-oriented view (states and state changes)

The required state space of the system is modeled in the state-oriented view within the

dynamic view. In particular, the model shows the reactive behavior of the system in relation

to the system context. The states and state changes that are observable at the interface

between the system and the system context are modeled in this view. A state change of the

system under development can be triggered by an event in the system context, by a time

event, or by an intrinsic event.

Finite automata, Harel Statecharts, or UML state machine diagrams based on these

concepts are typically used here.

Requirements Modeling | Handbook | © IREB 19 | 133

1.6.5 Scenario view (interaction sequences between actors

and the system)

The scenario view within the dynamic view considers interactions between actors in the

system context and the system which lead to one or more actors in the system context

obtaining added value or achieving a goal (e.g., obtaining cash by using an automated teller

machine). Scenarios are frequently used to make use cases in use case diagrams more

specific.

Here, the scenarios describe the interactions between the system and actors in the system

context that lead to successful execution of the use case. In scenario modeling, as well as

the immediate interaction between actors and the system under development, the message

exchange between actors in the context of the system is also typically modeled. UML/SysML

sequence diagrams or Message Sequence Charts according to the ITU standard Z.120

[ITU2004] are typically used to model scenarios.

1.7 Adapting modeling languages for requirements modeling

UML and SysML have a concept for adapting or extending the different modeling languages.

This is useful, for example, when specific concepts of a project or application domain are to

be anchored in the language. UML and SysML are typically adapted by defining stereotypes

to give notation elements a special meaning (or semantics).

In UML and SysML, all notation elements can be adapted or extended by stereotypes. The

definition of a stereotype consists of a syntactic part, in which the representation of

stereotypes and the desired references to notation elements are set, as well as a semantic

part which specifies the meaning of the stereotype.

In UML/SysML diagrams, stereotypes are modeled in the form of angle brackets. For

example, using the stereotype << domain >> for classes within a class diagram (definition

of the syntax of the stereotype), it would be possible to express that classes that have this

stereotype are specific to the particular application domain and their technical meaning is

more precisely defined within a domain glossary (definition of the semantics of the

stereotype).

1.8 Integrating textual requirements in the requirements

model

SysML differs from UML in that it has a special means of notation for modeling textual

requirements. It also defines a special type of diagram, the requirements diagram, which is

assigned to neither the structure view nor to the behavior view. This diagram type allows the

modeling of relationships between textual requirements or the attachment of textually

specified requirements to model elements of SysML diagrams and referencing of these

requirements.

This type of "modeling" of textual requirements is often used to include predetermined

requirements (e.g., from the point of view of a special field) in the requirements model.

Requirements Modeling | Handbook | © IREB 20 | 133

The main purpose of this integration is to relate the modeled requirements to the

predetermined textual requirements. This allows the expression of which modeled

requirements make a textual requirement more specific.

Most commercially available UML tools, however, already offer the possibility of using

textual requirements in any diagram type, and not only in requirements diagrams. This allows,

for example, the specification of textual requirements as an alternative to the diagrammatic

specification because in the opinion of a requirements engineer, certain requirements can be

specified more appropriately in textual form. For example, an action in a flow can be refined

through a number of textual requirements which are then included in the requirements

model and related to this action (by means of an appropriate tracing relationship, for

example).

Using this concept of integrating textually specified requirements in requirements models

allows us to specify quality requirements that relate to a specific action (e.g., requirements

concerning the performance of this action) as textual requirements by placing them in a

relationship with the action within the diagram in which the action was modeled.

Through this concept of complementary use of textual requirements, model elements from

the various diagram types for requirements modeling (and thus the corresponding diagrams)

can be extended in order to relate textual requirements to requirements diagrams within a

requirements model.

1.9 Documenting dependencies between model elements

Regardless of whether requirements are available in the form of requirements diagrams or in

textual form, they can be linked to one another in the course of model-based documentation

of requirements with UML/SysML using explicitly defined dependency relationships. To do

this, appropriate stereotypes for dependency relationships between model elements of the

requirements model can be defined (see also Section 1.7).

In many cases, the stereotype to be used (i.e., its syntax and semantics) depends heavily on

the project context and the application domain, which means that in a development project,

the project participants must define which dependency types are needed between

requirements (see also [RaJa2001]). The required dependency relationships must then be

defined in the appropriate tools.

Typical examples of commonly found dependency relationships between model elements

within a requirements model are:

▪ <<refines>>: A <<refines>> B expresses that a single requirement or a set of

requirements A refines a single requirement or set of requirements B by, for example,

specifying one or more additional requirements to the requirements B.

▪ <<realizes >>: A << realizes >> B expresses that the requirements A realize the

requirements B. This is used, for example, when A represents the requirements for a

component that when met, lead to fulfilment of the requirements B for the entire

system.

Requirements Modeling | Handbook | © IREB 21 | 133

However, this type of tracing is based on the fact that either (1) design decisions

about the structure of the solution were taken in the development process, or (2) the

need for such a component or specifications about the structuring of the overall

system into components already exist as boundary conditions for requirements

engineering (cf. [BDH2012], for example).

▪ <<satisfies>>: A <<satisfies>> B expresses that a single requirement or set of

requirements A meets a single or a set of requirements B. This type of dependency

relationship is used, for example, in customer-supplier relationships when more

detailed requirements that have been specified by the contractor have to be related

to the more general requirements of the client to express that the requirements A of

the contractor meet the requirements B of the client.

This type of dependency is used to express relationships between requirements in the

system requirements specification and requirements in the customer requirements

specification—for example, to support evidence that, for the system under

development, the requirements specified in the system requirements specification

ensure that the realized system will meet the requirements in the customer

requirements specification.

The dependency type <<satisfies>> has a certain resemblance to the dependency

type <<realizes>>, whereby dependencies of the type <<satisfies>> are typically used

at the interface between client and contractor.

1.10 The benefits of requirements modeling

Compared to the textual specification of requirements, specification of requirements by

means of diagrams has a number of essential advantages:

▪ Requirements are easier to understand:

Cognitive research has shown that, generally, facts that are visualized in diagrams

are easier to understand and remember than corresponding textual descriptions of

these facts (cf. [LaSi1987]). In particular, this means that requirements specified in

diagram form are easier to understand and remember than requirements which exist

in textual form. "A picture is worth a thousand words!"

▪ Inherent support of the principle of "separation of concerns":

Diagram types are defined for a specific purpose and, through the available notation

elements (semantics) and the way the language allows these notation elements to be

combined (syntax), force the modeler to focus on a situation. For example, state

machine diagrams should be used to model the necessary reactive behavior of the

system under development as part of requirements modeling and not to model

processes or information structures. In requirements modeling, the separation of

concerns is established by different views. The requirements models of the individual

views can be integrated through common concepts. This allows us to make

statements across different views of requirements. Detailed information can be

found in [DaTW2012].

Requirements Modeling | Handbook | © IREB 22 | 133

▪ Inherent support of the principle "divide and rule":

By using different diagram types, the specific requirements supported by that

particular diagram type can initially be modeled in isolation. The diagrams of different

types can be combined using common concepts or defined mapping relations in

order to obtain an integrated requirements model. This feature of diagram-based

specification of requirements supports the requirements engineer in breaking down

the overall problem— that is, the specification of the requirements of a system—into

manageable sub-problems (e.g., the specification of requirements for a subsystem).

The merging of the individual requirements models of the sub-problems then forms

the requirements model of the higher level system. More detailed information can be

found in [BDH2012] and [HaHP2001], for example.

▪ Reduced risk of ambiguity:

Due to the higher degree of formality of modeling languages for requirements

modeling compared to natural languages, requirements specified in diagram form

have a lower risk of ambiguity or misinterpretation by other participants in the

development process (e.g., the architects, developers, testers).

▪ Higher potential for automated analysis of requirements:

Due to the higher degree of formality of requirements specified in diagram form

compared to requirements specified in text form, such requirements can be analyzed

to a large extent or even completely by machine (e.g., an analysis of the accessibility

of states in a requirements diagram of the state-oriented view).

▪ Higher potential for automatic processing of requirements:

The higher degree of formalization of requirements specified in diagram form also

increases the possibility of processing the requirements of the system further

automatically and using them in other development disciplines, for example, to derive

test cases for system testing from requirements diagrams of the control flow-

oriented view.

▪ Requirements in context:

The modeling of requirements leads to individual model elements within the

requirements model (see Section 1.3) and the relationships of individual requirements

to other requirements being represented directly in the requirements model. This

facilitates the handling of large and complex requirements and promotes

understanding of the requirements because the context of a requirement is visible to

the reader of the requirements in the requirements model. In an activity diagram, for

example, for every action it is immediately visible what other actions this action is

related to and what change of state of the system under development is triggered by

the execution of the action.

Requirements Modeling | Handbook | © IREB 23 | 133

1.11 The quality of requirements models

The quality of a requirements model is based on the quality of its components. As described

in Section 1.1, the requirements model of a system is composed of a set of diagrams and

textual additions. When requirements are modeled, a substantial part of the requirements is

specified in the diagrams, which means that the quality of the requirements model is largely

determined by the quality of the individual diagrams and their mutual relationships.

In turn, the quality of the individual diagrams is determined by the quality of the model

elements within the diagrams and the associated textual additions. The left-hand pane in

Figure 5 illustrates the hierarchical structure of the evaluation of the quality of requirements

models.

Figure 5: Assessment of the quality of requirements models

The quality of the requirements model, the requirements diagrams, and model elements can

be assessed against three criteria (see [LiSS1997], for example):

▪ Syntactic quality

The syntactic quality expresses the extent to which a single model element (graphical

or textual), requirements diagram, or requirements model satisfies the applicable

syntactic specifications.

If the syntactic quality of a requirements diagram of the scenario view (which is in the

form of a UML sequence diagram) is to be assessed, the extent to which this diagram

meets the syntactic requirements of UML must be examined. For example, the syntax

of sequence diagrams prescribes that a synchronous message at a certain level of

detail consists of a function call and a reply message.

If, in a scenario modeled by a sequence diagram, a reply message occurs without a

preceding function call, this does not meet the syntactic specifications of the

underlying modeling language and thus reduces the syntactic quality of the diagram.

If appropriate modeling tools are used for modeling requirements, the syntactic

quality of the diagrams created is usually ensured by the tool.

Quality of the model elements

Quality of the requirements diagrams

Quality of the requirements model

Syntactic

Semantic

Pragmatic

Quality

Content correct
and complete?

Fit for use?

Meets syntactic
demands?

Requirements Modeling | Handbook | © IREB 24 | 133

▪ Semantic quality

The semantic quality expresses the extent to which a single model element (graphical

or textual), the requirements diagram, or the requirements model correctly and

completely represents the facts. Let us assume, for example, that after the insertion

of a debit card into the card slot of an ATM, the customer’s PIN is required as the first

step.

If a relevant requirements diagram of the control flow-oriented view (e.g., an activity

diagram) models that after reading the card data, the customer is first asked for the

payment amount, this represents a semantic defect in the corresponding diagram

since the actual flow required deviates from the diagram.

Such a defect in a requirements diagram negatively affects the semantic quality of

the higher level requirements model.

▪ Pragmatic quality

The pragmatic quality expresses the extent to which a single model element

(graphical or textual), the requirements diagram, or the requirements model is

suitable for the intended use. This in particular raises the question of whether the

degree of detail and abstraction level is appropriate for the intended use. For a single

model element, this means whether the model element (such as a state transition in a

state-oriented requirements model) is specified at the right level of detail (e.g., is only

the triggering event specified?

Or are the additional conditions applicable for the state change and the triggered

behavior indicated?). The pragmatic quality of an individual model element, a

requirements diagram, or a requirements model can only be assessed if the

addressee and the purpose of the diagram are known. Since the pragmatics

determine what abstractions are useful, this also has a direct impact on the

assessment of the semantic quality—that is, the completeness of a model element, a

requirements diagram, or a requirements model can only be assessed in terms of an

abstraction that is sensible from a pragmatic point of view.

Requirements Modeling | Handbook | © IREB 25 | 133

1.12 Further reading

Terminology in requirements modeling

▪ Glinz, M.: Glossary of Requirements Engineering Terminology. Standard Glossary of

the Certified Professional for Requirements Engineering (CPRE) Studies and Exam,

Version 1.1, May 2011.

Requirements modeling

▪ Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques. Springer

2010.

▪ Booch, G: Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide.

Addison-Wesley 2005.

▪ Daun, M.;Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.; Hönninger, H.;

Achatz, R.; Broy, M.: Model-Based Engineering of Embedded Systems, Springer,

Heidelberg 2012.

▪ Davis, A. M.: Software Requirements – Objects, Functions, States. 2nd Edition,

Prentice Hall, Englewood Cliffs, New Jersey, 1993.

Quality of requirements models

▪ Lindland, O. I.: Sindre, G.; Sølverg, A.: Understanding Quality in Conceptual Modeling.

IEEE Software, Vol. 22, No. 2, IEEE Press, 1994, 42-49.

▪ Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques. Springer,

2010.

Requirements Modeling | Handbook | © IREB 26 | 133

2 Context modeling

A major challenge in requirements engineering is understanding the context of the system.

The more complex and critical the system under development is, the more important it is to

understand and document the context. This includes knowledge about which other systems

influence the system under development in an operational context, properties of these

external systems, as well as knowledge about which roles or persons interact with the system

in an operational context and which properties that are relevant for the system they have. In

addition, context modeling also helps to identify the necessary interface of the system under

development.

2.1 Purpose

In requirements engineering, the scope of the system under development is defined (that is,

the system boundaries are specified) and the system under development is clearly

distinguished from its context. For this purpose, the influence of the context has to be

investigated and ideally documented. The more complex and more critical the system under

development is, the more important it is to document the knowledge about the context

effectively. This includes the knowledge about:

▪ Which roles and persons interact with the system in operation?

▪ What other systems are related to the system under development from an

operational perspective?

▪ How the interface between the system under development and the people and

systems is created in context?

Furthermore, the context view can help when considering the properties (functions, qualities)

of the external systems relevant for the system under development.

The context view documents properties of the system context. In contrast, the following

chapters mainly specify the perceivable necessary properties of the system that are in

scope and the system must have to fulfil its purpose in operation (including meeting the

goals of stakeholders and thereby complying with all conditions). The context view thus

documents a significant aspect of the work of requirements engineers when defining the

interface between the system and the context.

2.2 Context diagrams

From a requirements perspective, the context view defines the scope of a system, meaning

that it draws a line between functionality in and outside the scope. The classic context

diagram from Structured Analysis (SA) [DeMa1979] is often used as a means of

representation but today—because there are hardly any tools to support SA—many other

diagram types with equivalent content can be used (e.g., a UML class diagram, a use case

diagram, or a component diagram).In addition, a tabular representation can be used as a

substitute for a context diagram as long as the basic elements listed below are present.

Requirements Modeling | Handbook | © IREB 27 | 133

2.2.1 Basic elements of context diagrams

The three essential basic elements of a context diagram are:

▪ The system under development (more precisely, the system boundary)

▪ Neighboring systems or actors of the system under development (all people, roles, IT

systems, equipment, etc. with which the system has interfaces)

▪ The (logical) interfaces between the system and its neighboring systems

Experience shows that the interfaces between the system and the context can best be

determined by the incoming and outgoing data. The classical context diagram therefore

focuses on this input and output data from and to neighboring systems. In this sense, the

context diagram is the most abstract form of a data flow diagram (see Section 4.3) because

the complete functionality of the system is reduced to one function (namely the whole

system). The focus of this diagram is the identification of all interfaces of the system under

development.

2.2.2 Example of a context diagram

Figure 6 shows an example of a context diagram using Structured Analysis. The overall

system (an early warning system in the mining industry) is represented as a circle in the

middle. The human neighboring systems are shown in the example as stick figures and the

organizational and technical neighboring systems as boxes. The interface is modeled in the

form of data flows to and from the neighboring systems.

Figure 6: Example of a context diagram

Today, SysML block diagrams [OMG2010a] can be used to model the system context, for

example. Figure 7 shows the context diagram of an automated machine for the production

of cylinder heads for cars (see [DaTW2012]).

Early
Warning
System

Sensor

Operator

Admin

Statistics
System

Day Results

Protocol

Warning
Sensor
Data

Operator
Request

System
Messages

Requirements Modeling | Handbook | © IREB 28 | 133

Figure 7: Example of a context diagram in SysML block diagram form

The diagram shows actors in the system context and the data flows between actors and the

system under development. Such context diagrams based on SysML document very similar

information about the system context to context diagrams which are based on the data flow

diagrams of Structured Analysis.

2.2.3 Notation elements for modeling context diagrams with

data flow diagrams

Data flow diagrams can be used to model data flow-oriented context diagrams. Figure 8

shows possible model elements for the construction of data flow-oriented context diagrams

based on data flow diagrams according to DeMarco (cf. [DeMa1979]).

Figure 8: Possible modeling constructs of data flow-oriented context diagrams

In context modeling using data flow diagrams, the system under development is often

represented by a circle, sometimes a box or a cloud. The corresponding modeling construct

represents the system under development, which, for example, represents either a part of a

company, a business process, or a system to be automated. It thus expresses the scope of

the system under development (i.e., the system boundary). The presentation of the

neighboring systems is relatively arbitrary; often these are modeled as boxes but can also be

modeled as stick figures or as a 3D box or as double lines for external databases or "files".

Name

Name

Notation

Neighboring system / actor

System (SuD)

Explanation

The system considered in the
scope of analysis/development

Neighboring system or
actor in system context

Data flow
Flow of data between system
and system context

Name

Name

Requirements Modeling | Handbook | © IREB 29 | 133

In Structured Analysis according to DeMarco, neighboring systems (sources and sinks) are

called terminators (= terminals). Neighboring systems or actors represent any kind of

communication end points of the system under development. Neighboring systems or

actors can on one hand be people who work with the system, but on the other hand

hardware/software systems, devices, sensors, actuators, or passive data storage (such as

databases or files)—that is, everything or everyone who delivers input to the system or

receives output from the system (or both). The neighboring systems thus represent parts of

the context of the system under development.

The data flows between neighboring systems or actors and the system under development

represent input and output interfaces of the system under development. These data flows

are mostly shown as straight or curved lines with an arrowhead to the system (for input),

arrowhead to the neighboring system (for output), or as a double arrow. Data flows in this

type of context diagram represent the incoming and outgoing data or control information.

Mostly, these arrows are interpreted as data flows into or out of the system. If control flows

are represented in this way, this should be explained in a legend to the diagram.

2.2.4 Pragmatic rules for context modeling with data flow

diagrams

The following pragmatic rules should be considered:

▪ All neighboring systems that interact with the system should be included in the

diagram (completeness of the communication partners).

▪ All neighboring systems should be named (to clearly specify where the input comes

from and where the output goes to).

▪ All inputs and outputs should be labeled with the logical name of the data flows

(because unnamed arrows indicate a lack of understanding of the interface).

2.3 Other types of context modeling

The cooperation between the system under development and the neighboring systems in

the context is also the subject of the use case view (see Section 4.2) and the scenario view

(see Chapter 5). In addition to defining the system boundaries (scoping), the use cases are

used to roughly structure the system's functionality. With the scenario view, sequences of

communication and other communication details can be specified more precisely in addition

to the specification of the data flows. Current research includes proposals for context

modeling in a state-oriented view, in which the state of the system context and

corresponding state transitions are modeled.

There are also approaches for modeling static-structural aspects of the system context by

using information structure view diagrams. Other approaches to context modeling consider

the system in the context of a data flow-oriented view by modeling functions in the system

context (context functions) and documenting their relationship to functions of the system.

Requirements Modeling | Handbook | © IREB 30 | 133

Such approaches are used in particular for mechanical detection of unwanted functional

interactions between the system and its context (feature interactions). An overview of the

different types of context modeling in requirements engineering can be found in

[DaTW2012].

2.4 Further reading

Data flow-oriented context diagrams

▪ DeMarco, Tom: Structured Analysis and System Specification, Yourdon Press,

Prentice Hall, 1979.

▪ Daun, M.: Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.; Hönninger,

H.; Achatz, R.; Broy, M.: Model-Based Engineering of Embedded Systems, Springer,

Heidelberg 2012.

Use case-oriented context diagrams

▪ Jacobson, I.: Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software

Engineering – A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

Requirements Modeling | Handbook | © IREB 31 | 133

3 Information structure modeling

3.1 Purpose

The modeling of information structures has a central role in requirements modeling, mainly

because it has two tasks:

▪ Specification of technical terms and data

▪ Specification of requirements that relate to technical terms

A glossary is often used to define technical terms in requirements engineering. In a glossary,

the meaning of the terms in the domain or in the language of the client is defined. With the

introduction of information models, the content of a glossary is supplemented with

important information. Information modeling often starts by looking at all nouns that occur

either in textual requirements, or, for example, in data flow-oriented or control flow-oriented

requirements modeling in the naming of functions of the system (see Section 4.3).

In an information model, however, a lot of emphasis is placed on the relationships between

the terms. Expressing these relationships is one of the strengths of diagrams of the

information structure view compared to a textual, perhaps alphabetically arranged glossary.

The second step is to define the "attributes" of the terms. Attributes express the relevant

properties and technical information of a term. Thus, relevant properties can be clearly

represented in an information structure diagram—for example, for a customer in a CRM

system. With this kind of information modeling, a conventional glossary is expanded to

include additional information. The glossary can be derived automatically from this type of

diagram. Thus, the use of information models also fulfils the purpose of a glossary—the

definition of terms that should be used uniformly throughout the system development.

Another use for the modeling of information structures is the precise specification of

requirements. All information modeled in the structures should be considered as

requirements (see also Section 1.3). The statement above, about which customer data is

relevant for a CRM system, can also be interpreted as "data that the CRM system must

manage for a customer".

3.2 Modeling information structures

This section looks at the requirements in the information structure view using UML class

diagrams. There are several approaches for modeling information structures. One diagram

that is related to this kind of modeling is the ER (entity-relationship) diagram [Chen1976].

Today, it is commonly used for modeling database schemas. The relationship with the class

diagram consists in the transition from a (logical) information model in requirements

engineering to a physical database schema. The information model is a good basis for

designing database schemas, that is, the storage of business data.

Requirements Modeling | Handbook | © IREB 32 | 133

The great advantage in the use of UML class diagrams lies in the UML integration with other

diagram types that are used in other views in requirements modeling (see Section 1.5). This

can be necessary to achieve the links required for a formally correct, complete, and

understandable requirements model—for example, the link between activity diagrams and

the information model.

This integration also determines the approach for the creation of an information model

within the framework of requirements engineering. Usually, you will create such a model to

have a good basis for modeling other views. However, it quickly becomes clear where the

deficits lie in the information model. In this case, any deficiencies in diagrams or other views

because, for example, when the functions were defined, not all required technical

information was considered, are then identified. This change between the different

perspectives is not always easy but has great potential with respect to the correctness and

completeness of the modeled requirements.

3.3 Simple example

The figure below shows a simple example of a data diagram in the form of a UML class

diagram. It shows the relevant terms, the attributes, and the dependencies.

Figure 9: Example of a class diagramm

The above class diagram consists of five classes: contact, company, person, address, and

department. It documents the essential properties of these classes in the form of

attributes—for example, the attribute "date of birth" of a person—and the dependencies

between these classes, such as that a person is a representative for a company or that a

company is made up of departments.

The meaning and use of the various modeling methods of class diagrams are considered in

detail in the following sections.

Requirements Modeling | Handbook | © IREB 33 | 133

3.4 Modeling classes, attributes, and data types

The central element of information structure diagrams modeled on the basis of UML class

diagrams are the class and the attributes of the class.

3.4.1 Classes

3.4.1.1 Objects versus classes

When information structure models are used in requirements modeling, two terms must be

differentiated: objects and classes. A "class" is a pattern or template which defines the

common properties of many objects. The objects are then referred to as instances of these

classes.

Figure 10: Class vs. object

Figure 10 shows the classes person and car and on the right, some objects as instances of

these classes. For these objects, an important property of the objects is also shown: they are

unique and should therefore also have a unique identifier (for more information about

uniqueness, see Section 3.4.2). With the unique name in the figure above, the two cars

belonging to Sally Brown can be differentiated.

Requirements Modeling | Handbook | © IREB 34 | 133

3.4.1.2 Syntax and semantics

Figure 11: A class

The simple representation of a class consists of a rectangle with the class name. This is

expanded in Section 3.4.2 with the representation of attributes.

As mentioned above, a class represents the template for a plurality of objects of this class

which are referenced in the requirements. Therefore, in general, the name of a class is used

in the singular. When referring to a person, the class name "persons" would be incorrect as

this means multiple persons.

The statement that a class represents the template for a plurality of objects of this class is a

general statement for a class diagram. You can, however, formulate the data structure

perspective of a requirements model more easily with the class diagram: the terms that are

relevant in the domain in question appear as classes in the diagrams of this view. In other

words, the nouns that are used in the formulation of the requirements appear as classes.

With the distinction made above between an object and a class, the latter needs to be

clarified because the requirements (textual or graphical) are terms used to refer to any

object of that class.

Example: The system must display the data of a person

Assume that in an information model a class person exists. This requirement is to be interpreted

such that the data for each object of the class person is to be displayed.

This results in the first task of modeling the information model: identifying the required

classes from the objects used in the requirements.

3.4.1.3 Heuristics for identifying classes

One of the simplest approaches for identifying classes is to define a class for every noun in

the requirements (or the current specifications). However, you will quickly find that this

approach provides a vast number of classes which then have to be processed further. Many

of the classes found only describe the properties of another class. These classes are then

added to this other class as class attributes (see Section 3.4.2). Another aspect of reducing

the vast number of classes is to classify synonyms or phrases out of context, for example.

Let us assume that the following nouns would have been identified in a first step: person,

age, car, gender, color, vehicle, man. In this list, there are only two terms that are worth

Requirements Modeling | Handbook | © IREB 35 | 133

modeling as classes (cf. [Mart1989], [ShMe1988]): person and vehicle. For the other terms,

the following applies:

▪ Man: synonym for person

▪ Age: property of a person

▪ Car: synonym for vehicle

▪ Gender: property of a person

▪ Color: property of a vehicle

Requirements Modeling | Handbook | © IREB 36 | 133

With this selection, three assumptions were made that need to be confirmed in the context

of a real development project:

▪ The concept of person must be used consistently and not man.

▪ The concept vehicle must be used consistently and not car.

▪ The term color refers to the color of a vehicle.

For synonyms, the common language use of the project or a company is decisive—as long as

it is unique. This procedure allows a good first version of the information model. Further

heuristics that extend the approach presented are described in Sections 3.4.2.2 and 3.6.3.

Another way to find classes is to search directly for specific candidates in typical

formulations. These can be divided into three areas:

▪ Tangible or intangible objects

▪ Roles

▪ Functions

This procedure significantly reduces the set of all nouns.

3.4.1.4 Tangible and intangible objects

Tangible objects in the real world are relevant for the requirements as they are either

affected by the system under development or have a "representative" (e.g., a class) in the

system under development (or both cases can apply).

Examples:

person, car, door, book, leave application (which is not printed, so does not have to be tangible)

or club.

3.4.1.5 Processes

To support the system processes, additional and relevant information is often needed, such

as: delivery, order, call, assembly, or report. For example, the data of a delivery, such as the

date of receipt or the agent, may be technically relevant to the system.

Note that the term in the information model is not the function to be implemented by the

system. The information model describes the relevant information for the process—not the

process itself which is to be supported by the system (see also Chapter 4). This process is

generally denoted by a noun in combination with a verb in its normal form, rather than only

by a noun, as is the case in the information model.

Depending on the field of application, an order could be a useful class in the information

model. The receipt of an order could then be a supportive function of the system. It can be

used to derive, for example, the names of use cases (see Section 4.2): receive order, forward

order, and complete order.

Requirements Modeling | Handbook | © IREB 37 | 133

3.4.1.6 Roles

Similar to functions, roles of objects can be interesting for information structure models.

These roles are then defined as separate classes.

Examples are:

- Driver: a person in the role of the driver of a car

- Residence: the address of the first residence of a person

There is another alternative for modeling roles in the information model. More information

about this alternative can be found in Section 3.5.1 and Section 3.7.1.

3.4.1.7 Defining the meaning of terms

An important property of an information model is that the terms defined in the model are

placed in context (see Section 3.1). Together with the definition of the attributes, this means

that a large part of the meaning is generally already defined. If additional descriptions are

necessary, textual additions can be defined, which are then placed in a relationship with the

corresponding class.

Figure 12: Class and natural language definition

3.4.2 Attributes

Attributes are used to specify classes more precisely, which means that defining attributes

enriches the corresponding diagrams with additional semantics. This is very important in

requirements modeling.

Requirements Modeling | Handbook | © IREB 38 | 133

3.4.2.1 Syntax and semantics

Figure 13: Class with attribute

The attributes are defined within the scope of the class. The following components are

allowed (represented in Backus-Naur form):

[/] Name [: type] [multiplicity]] [= default]

▪ Name: the name of the attribute, which is obligatory

▪ Data type: the data type of the attribute; this is optional and is described in Section

3.4.2.4

▪ Default: the value of the attribute set on creation of a new object of the class

▪ Multiplicity: can be used if the attribute can take on multiple values simultaneously

(e.g.: several first names); the same multiplicities are used as in the relationships (see

Section 3.5)

▪ Derived: the leading "/" indicates that the attribute value can be derived from other

values (e.g.: the age of a person can be derived from the date of birth)

The attributes specify domain-specific properties of a class that are relevant for the system

under development.

3.4.2.2 Heuristics for determining attributes

To distinguish between classes and attributes, check each noun which was found as a

potential class (see Section 3.4.1). In each case, consider whether the noun is merely a

property of another class. If so, this noun is defined as an attribute of this other class.

Attributes are often identified as such because of wording in written or spoken text.

Common types of formulations that indicate potential attributes of classes are the following:

Noun in combination with a genitive

Example:

- the date of the order

- the diameter of the circle

- the color of the car

Requirements Modeling | Handbook | © IREB 39 | 133

The names of the attributes and the corresponding class are already given in the

formulations. No further interpretation of the formulation is required.

Sentence construction with: <class> has <attribute>

Example:

- a person has a date of birth

- an address has a postal code

- the process has a transition time of ...

This type of formulation is an indication of an attribute of a class or a relationship between

two classes. More information about the distinction between whether something is an

attribute of a class or a relationship between classes can be found in Section 3.4.2.3.

Adjective in combination with a noun

Example:

- a fast car

- a large display

- a huge bank account

- a red car

- a black list

This type of formulation usually indicates a concrete instance of a class (car fast). We have

to determine which attribute of the class is meant (e.g., size of display = large) (see Figure 14).

Figure 14: Modeling variations for adjectives with nouns

Requirements Modeling | Handbook | © IREB 40 | 133

Sentence structures with: <class> is <attribute value>

Example:

If the person is an adult; if the application is approved; ...

In this case, only a value of an attribute is specified. Again, further analysis is necessary

because in the examples above, classes are compared with attribute values. However, the

values apply to attributes of the class and not to the class itself (e.g., approved is a value of

application status).

Differentiating objects

In addition to the formulations presented, attributes can also be derived from a required

property of objects in the object-oriented paradigm: objects always have to be unique in

their context.

This uniqueness must be achieved by using different values of the attributes of objects. At

any time, the combination of the attribute values must be different between objects of the

same class. Only then can the objects be uniquely distinguished for a user of the system.

Example:

Modeling the object Peter Schulz with only two attributes (first name, last name) may not be

sufficient to distinguish it from another person with the same name. If the class person also has

the date of birth as an attribute, its objects may be clearly distinguishable (i.e., another person

with the same name but born on a different day).

3.4.2.3 Class or attribute

The distinction between a class and an attribute is not always easy. If there is any doubt as to

whether an identified term should be represented in the information model as a class or an

attribute, then the term should first be modeled as a class. In contrast, if the term identified is

simple, unstructured data such as text, dates, numbers, or Boolean information, then the

term should be represented as an attribute in the information model.

For structured information, the following heuristic is helpful: as soon as a structured form of

this information belongs to more than one other object, it should be modeled as a separate

class.

The example in Figure 15 shows the difference for an address. Objects of the class address

can belong to multiple objects of the class person. These objects share an address. Changes

to an address affect all persons that are associated with that address. In contrast, the

addresses in the second part of the example are completely independent.

Requirements Modeling | Handbook | © IREB 41 | 133

Figure 15: Class or attribute

3.4.2.4 Information modeling for existing systems

Existing systems have a rich pool of resources that can be used to create an information

model. They help to identify not only classes and attributes but also relationships and

multiplicities.

Possible sources:

▪ Logical or technical information model (entity-relationship models)

▪ Interface specification

▪ Description of a data warehouse

On one hand, the challenge with this existing information is—as with any system

archeology—that the information has to be validated and checked for accuracy. On the

other hand, we should avoid including technical implementation attributes (technical

identifiers and optimizations) in an information model.

3.4.3 Data types

Requirements modeling with UML class diagrams distinguishes between three kinds of data

types: primitive data types, structured data types, and enumerations.

3.4.3.1 Syntax and semantics

The syntax for data types is similar to the syntax for classes. The name is mandatory. Further

information can be added to determine the allowable set of values of attributes.

Requirements Modeling | Handbook | © IREB 42 | 133

Figure 16: Examples of data types

Primitive Types: unstructured data types

The primitive data types are unstructured and thus the simplest data types. They represent

simple data types such as a number, Boolean value, string, etc.

UML has a number of pre-defined primitive data types:

▪ Boolean: a Boolean value, can be TRUE or FALSE

▪ Integer: a whole number

▪ Float: a floating point number

▪ Character: a single character

▪ String: a sequence of characters

Depending on the application, it may be useful to specify more primitive data types, that is,

to define data types that do not require more in-depth definition.

Example:

String50. It is clear, without further description, that a string of length 50 is meant.

Structured data types

This kind of data type allows the definition of structures, that is, the definition of complex

data types that are composed of more simple data types. These are always very specific to

a certain application area. UML specifies only the mechanism for defining such data types

and therefore does not contain any concrete data types. Figure 17 shows several examples.

Figure 17: Example for the modeling and use of data types

As the example in Figure 17 shows, these data types can be defined hierarchically. The end

point of the hierarchical definition is primitive data types or enumerations.

Requirements Modeling | Handbook | © IREB 43 | 133

Enumerations

If the domain of an attribute can be specified by a denumerable list of acceptable values,

this data type can be defined as an enumeration. Figure 18 shows two examples of the

definition of an enumeration type.

Figure 18: Enumerations

The above example is a typical case of the use of an enumeration: the definition of a status

(for an application). However, the definition of this data type is redundant when a state

machine for the class "application" is available (see also Section 0). Therefore, only one of

the two should be included in a requirements model.

3.4.3.2 Heuristics for determining data types

When creating an information model during requirements engineering, we have to decide

whether it is useful to model the data types of attributes of a class at this point in the project.

The advice here is to model a data type immediately (preferably a primitive data type).

During further modeling, this can be redefined or refined into a more complex data type, or

even a stand-alone class as required. If necessary, the data type can be specified in more

detail by textual requirements.

The next question would then be to identify more information about the data type. For

enumerations, the answer is obvious: we identify the possible values of the attribute and list

them in the enumeration. For structured data types, the necessary information is found in

the domain of the application. This is similar to the question for identifying the necessary

attributes of a class (see Section 3.4.2).

3.4.4 Recommendations for modeling practice

3.4.4.1 Modeling tip: attribute constraints and textual

requirements

If the UML options are insufficient or the results are not "easy to understand", we can add

textual requirements.

Requirements Modeling | Handbook | © IREB 44 | 133

Figure 19: Modeling attribute constraints

3.4.4.2 Modeling tip: views of things

In the language of project stakeholders, a term is often used implicitly for several things or

views of one thing (homonym). For example, the request may be used as a homonym for: the

empty paper form, the completed document, and the signed document or the data in the

system. The diagram must clearly state which meaning the modeled terms have.

Stereotypes may help to clarify the situation.

3.4.4.3 Modeling tip: length vs. number of strings

When attributes of a class which contain text are defined (e.g., a person's name), then the

question of the maximum length of the string arises. Multiplicity is often misused in this case.

According to UML, first name:string[20] means there are 20 first names of the type string.

This does not define a string of length 20. We can resolve this ambiguity problem in UML by

defining a special data type.

3.4.4.4 Outlook: specification with OCL

For the exact definition of constraints, OCL (Object Constraint Language) from OMG

[OMG2012] provides the possibility of a more formal specification which, however, is not

always easy to understand. The condition that a customer must be 16 years of age or older

could be formulated as an OCL constraint as follows:

context Person inv: self.Client=true implies self.age >= 16

3.5 Modeling relationships

A key component of an information model is the relationships. They are represented as a

connection between classes and express how (i.e., with what meaning) the objects of the

specific classes are related to each other. The most commonly used relationships in the

modeling of requirements are simple relationships (binary associations), aggregations, and

compositions.

Requirements Modeling | Handbook | © IREB 45 | 133

3.5.1 Simple relationships (binary associations)

Simple relationships are drawn between classes and describe the relationship which two

objects have to each other. The two objects can thereby be instances of two different

classes or of the same class.

In addition to simple relationships, UML provides n-ary relationships which connect multiple

objects. However, these are not discussed further in this document.

3.5.1.1 Syntax and semantics

Binary associations are modeled as a line between the corresponding classes. In order to

give this line a meaning, additional information is added. Figure 20 considers the classes

person and address. The model should state that a person has exactly one address assigned

where they live and also exactly one other address to which correspondence should be sent.

An address can be assigned to more than one person as the correspondence address or

residence.

Figure 20: Example of modeling simple relationships

▪ Name: Specifies the name (meaning/semantics) of the association in a verb phrase

▪ Reading direction: Direction in which the name is to be read

▪ Multiplicity: Is listed at each end of the association and indicates how many objects

the other object may or must be related to

▪ Role: Refers to the role played by the object to which the role is attached with respect

to the other object

To identify this additional information for relationships, it is helpful to imagine the objects,

especially when determining multiplicities.

Requirements Modeling | Handbook | © IREB 46 | 133

Figure 21: Relationships of the objects

In addition to the requirements contained in the information model, associations are often

the basis for deriving functional requirements.

Example: Requirement without the use of associations

Show address

A functionality, as in the example "Show address" above, which refers to only one object

("Address") without considering its relationship to other objects, is often incomplete.

Relationships are very useful for defining the context precisely and thus reducing the set of

objects to the desired/required quantity.

Example: Requirement with the use of associations

Show the correspondence address of the person who is the contact for the company

Associations offer the opportunity to move through the information model. This ability to

navigate through the information model also shows the importance of the unique name for

the associations between classes, especially when multiple relationships exist between two

classes. For this purpose, we refer to either the name of the association or a role at the end

of the relationship. When formulating requirements, role names can be used instead of the

class names (see the example and Figure 9).

For a requirements engineer, multiplicities are an important tool for verifying the details of

the quantifiers in the requirements:

Examples:

- Requirement 1: Show the person

- Requirement 2: For this person, show the company for which it is the contact person

Requirements Modeling | Handbook | © IREB 47 | 133

The formulation of requirement 2 seems to assume that there is exactly one legal entity. The

multiplicities in the diagram show a different picture.

For a requirements engineer, the following questions regarding the requirements and the

association arise: Is the multiplicity of the association correct? If it is incorrect, it must be

changed. If it is correct, then the following questions must be answered:

▪ What should happen if a legal entity is assigned?

▪ What should happen if more than one legal entity is assigned? How is the one you

want to display selected (e.g., the one with the youngest or oldest date of

incorporation)?

3.5.1.2 Heuristic for determining simple relationships

Linguistic Formulations

Relationships between classes can be discovered by certain statements in the natural

language. Statements such as "A departmental manager manages a department" can be

expressed directly in the diagram. Depending on the formulation of such statements, they

are drawn in different ways in a class diagram:

Verbs → binary association, association name, read direction

"Head of department manages department" or "Departments are managed by departmental

heads".

Verbs in an active or passive formulation indicate the meaning of the association. In a model,

verbs in active form are preferred. When requirements are the basis for the determination,

then verbs (= functionality) must be critically queried.

Example:

Employee orders product

In the information model, this would only be included as an association if the information

about which employee has ordered which product is relevant.

Nouns → role

"Employee is head of a department"

If two concepts are connected with a noun, then it is usually a role that sets one of the two

terms over the other. If the role contains properties, then this role could also be modeled as a

separate class (see Section 3.7.1)

Quantifiers → multiplicity

"A natural person can be a contact for any number of legal entities".

"For a legal entity, exactly one natural person is the contact".

Requirements Modeling | Handbook | © IREB 48 | 133

Quantifiers specify the associations found and are absolutely necessary for both ends of the

relationship. A statement mentioning "a/one" should always be questioned with "exactly

one?".

Classes without further reference in the class diagram

Each class in the information model must be in a relationship with at least one other class (via

a simple relationship, generalization, an aggregation, or a composition). If classes exist that

are not in a relationship with any other class, this gap needs to be closed. This means that the

classes and the relationships between them form a network.

3.5.2 Aggregation and composition

For certain types of relationships (more precisely, the semantics of relationships), UML has

specific notation elements.

3.5.2.1 Syntax and semantics

In UML, a "part/whole" relationship can be represented with a line on which a diamond shape

is located at the end with the class that represents the whole.

Figure 22: Example for the modeling of aggregations and compositions

This is primarily a relief when modeling and reading the diagrams because the importance of

the association is clear immediately. A special form of aggregation is the composition. Here,

the part/whole connection is particularly strong. It is used to specify that deleting the whole

also deletes the parts.

3.5.2.2 Heuristics for determining aggregations

Because aggregations and compositions are considered as specific types of a relationship,

the heuristics for identifying relationships (see Section 3.5.1) can also be used to identify

aggregations and compositions. From the perspective of the specific meaning of such

associations, aggregations and compositions are indicated by keywords that relate to

statements about part/whole dependencies.

Requirements Modeling | Handbook | © IREB 49 | 133

Verbs

Typical verbs that indicate aggregation or composition relationships are:

▪ consists of

▪ is composed by

▪ contains

▪ results

▪ has

Example:

"A company consists of departments “

Nouns

Aggregations and compositions can also be identified via role formulations. Depending on

the meaning of the relationship, these are:

▪ part

▪ whole

▪ component

Example:

"A department is part of a company"

3.5.3 Association classes

3.5.3.1 Syntax und semantics

A mixture of association and class is the so called association class. By using association

classes, it is possible to allocate properities directly to concrete associations between

classes.

Person Adresse

Verwaltungsinformation

Erstellt am

Erstellt von

*

wohnt

*

Person Address
lives

Management Information

Created on
Created from

Figure 23: Simple Example of modeling management information with association classes

Requirements Modeling | Handbook | © IREB 50 | 133

In the example shown above the link between an object of the typ “Person“ and a particular

object of the typ “Address“ has been extended by an object of the type “Management

Information“. The object of the type “Management Information“ enriches the association by

adding the information when and who has created the corresponding relationship. In this

case, to any relationship between objects of the type “Person“ and “Address“ an additional

object exists holding the corresponding management information. Due to the semantics of

association classes no additional multiplicities are modeled.

The modeling of assocation classes is controversly discussed as novice user interpret such

models often in a wrong way. In doubt and in order to validate the interpretation such

diagrams can also be modeled with normal classes and associations between them.

Person Artikel

Bestellung

Bestelldatum

Person Artikel

Bestellung

Bestelldatum 0..*

1

0..* 0..*

1

0..*

Person Product

Date

Order

Person

Date

Order

ProductPerson

Order

Date

Figure 24: Transformation of modeling of association classes by using “normal“ classes

The example at the right hand side in the figure above is sometimes misinterpreted as: A

person can order several products when placing an order. For a better understanding Figure

25 shows a valid example for the instantiation of the class diagram displayed at the left hand

side of Figure 24.

P1: Person

O1: Order

O2: Order

O3: Order

O4: Order

P2: Person

Pr1: Product

Pr2: Product

Figure 25: Exaple for a valid instantiation of the class diagram in Figure 24 (left hand side)

The example shown above can be extended concerning the fact that a person can order

more than one items of a particular product. For instance, by adding an attribute Quantity to

the class Order.

Requirements Modeling | Handbook | © IREB 51 | 133

3.5.3.2 Heuristics for identifying association classes

Association classes attribute associations. Linguistically, all formulations that refer to

properties concerning an association are interesting.

Example:

How long / since when a person lives at an address.

When / how often a person has visited a place.

3.5.4 Practical advice for information modeling

3.5.4.1 Modeling tip: constraints of relationships and

textual requirements

If the UML options are insufficient or the results are not "easy to understand", then we should

use textual requirements in addition to the model.

Figure 26: Modeling constraints of relationships

3.5.4.2 Modeling tip: attribute or association

Two classes that are connected to each other with a 1:1 or 0..1 relationship can occur but this

situation is rather unusual. In this case, we should question whether one of the two classes

can be converted into an attribute of the other class.

3.5.4.3 Modeling tip: navigability vs. reading direction

When modeling classes, there are two representations of relationships that can be

interpreted as "directions" with a very different meaning (not counting the triangle of the

generalization that could also be misread as a direction arrow). One representation is the

reading direction of the name of the association (i.e., the small arrowhead next to a verb)

(see Section 3.5.1), as shown in the upper part of the following figure.

Requirements Modeling | Handbook | © IREB 52 | 133

Figure 27: Reading direction vs. navigability

The other representation is the navigability as shown at the bottom of the figure above. The

latter states that for a person, we can get the address at which he resides but not vice versa.

This navigability is important in the realization. In requirements engineering, however, it plays

a minor role.

3.5.4.4 Modeling tip: different interpretation of

multiplicities (versioning, historizing, dynamics)

Multiplicities appear to be defined very precisely. However, they can lead to discussions or

different interpretations.

Figure 28: Unclear multiplicities

0..* can be interpreted as:

▪ *: Person has (over time) many identity cards (expired, lost)

▪ 0: does not need an identity card (does not have one or has lost it)

▪ 0: A person always has an identity card but the person is created first and then the

card. Therefore, there is a period before the identity card is created when a person

exists without an identity card.

An information model always shows a static and consistent structure of the information.

Accordingly, there is no intention to resolve intermediate states of the information. Other

temporal aspects, such as versioning or history, may well be relevant and modeled

accordingly. Figure 29 shows a possible modeling of a simple history.

Figure 29: Resolution of unknown multiplicities

Requirements Modeling | Handbook | © IREB 53 | 133

3.5.4.5 Outlook: specification with OCL

For the exact definition of constraints, OCL (Object Constraint Language) from OMG

[OMG2012] provides the possibility of a more formal specification which, however, is not

easily understandable. The condition that each person in the role of purchaser must have a

delivery address could, for example, be expressed by the following OCL constraint:

context order

inv:self.purchaser->notEmpty()implies self.Purchaser.DeliveryAddress-

>notEmpty()

3.6 Modeling generalizations and specializations

3.6.1 Syntax and semantics

The common properties and relationships of multiple classes can be summarized by a

generalization. Models can thus be simplified. The corresponding classes are connected with

a line with an arrowhead at one end. The class that the arrowhead points to represents the

generalized concept. If the class has no objects (i.e., no instances of this class), then it is

called an abstract class. To illustrate this in the diagram, the name of an abstract class is

displayed in italics. Figure 30 shows a simple example for the modeling of a generalization.

Figure 30: Example for the modeling of a generalization

Generalized terms should be used with caution, as there is a risk of misunderstandings.

Abstract and non-abstract generalizations have a different meaning for requirements.

In this context, abstract generalizations are—in contrast to non-abstract generalizations—

representative of each of their specializations.

The system must provide the user with the ability to create clients <abstract generalization>

This corresponds to:

1. The system must provide the user with the ability to create companies

<Specialization1>

2. The system must provide the user with the ability to create persons <Specialization 2>

Requirements Modeling | Handbook | © IREB 54 | 133

When "Client" is not an abstract class (i.e., it is not italicized), the above requirements allow

the creation of a client object (without specifying whether the client is a company or a

person).

3.6.2 Generalization sets and their constraints

Generalization sets offer the option of combining different aspects of a generalization to

form groups of subtypes. Figure 31 models two generalization sets (contact kind and contact

type) with associated constraints.

Figure 31: Example for modeling generalization sets and constraints

In UML, the specification of properties of such a generalization set is annotated by

constraints in curly braces.

Typical constraints are:

▪ Incomplete: The modeled subtypes are not necessarily complete. For example,

manufacturer could be added as a contact kind.

▪ Complete: The modeled subtypes are complete. No other contact types are possible.

▪ Disjoint: An instance can only be one of the subtypes. For example, a contact is either

a person or a company, but never both.

▪ Overlapping: An instance can belong to more than one subtype. For example, a

contact may be a customer and a supplier.

3.6.3 Heuristics for identifying generalizations

3.6.3.1 Linguistic formulation

As in the other areas, generalizations and specializations can also be identified by specific

linguistic formulations.

"The dog is a kind of animal"; "A kind of animal is a dog"; "The boss is a special employee";

"Typical payment methods are bank transfer or billing".

Requirements Modeling | Handbook | © IREB 55 | 133

3.6.3.2 Uniformity

Generalized classes can be created for classes that have many of the same attributes and

possibly also have the same relationships to other classes. This can lead to generalized class

names that are not used in the domain.

3.6.4 Recommendations for modeling practice

If all specializations have no attributes, modeling via a property "type" or "kind" is possible.

Figure 32: Empty specializations

The choice is determined by the domain experts. If the names of the specializations are

anchored in the language of the stakeholders as separate terms, then these should be

modeled as independent concepts. If they play a rather subordinate role, an enumeration is

preferred.

3.7 Other modeling concepts

3.7.1 Typical concepts and patterns of information

structure modeling

In information models, similar structures are encountered again and again. Possible solutions

for such structures are called patterns. The main analysis patterns for information models

are:

▪ Item-item description, for example, for a book and specific copy of a book; product

and article; invoice and invoice item [CoNM1996]

▪ Party (also known as a role pattern) [Fowl1996]

▪ Coordination for, e.g. Processes [Balz2011]

▪ Composite, e.g., for organization or file system [GaJV1996]

Requirements Modeling | Handbook | © IREB 56 | 133

3.7.2 Derived associations

Derived associations are associations that can be derived from existing associations and are

therefore redundant. Similar to derived attributes, these associations require a derivation

rule. In the simplest case, this is supplemented textually and can simplify the formulation of

the requirements because the derivation rule only has to be defined once. An example is

shown in Figure 33.

Figure 33: Derived associations

3.7.3 Scope of generalization diagrams

Generalizations can quickly form whole trees with multiple levels. Once such a tree consists

of more than 7 ± 2 elements, it should be maintained in a separate diagram.

3.8 Further reading

Creating information models

▪ Martin, J.: Information Engineering, Book I – Introduction. Prentice Hall, Englewood

Cliffs, 1989.

▪ Shlaer, S.; Mellor, S.: Object-Oriented Systems Analysis – Modeling the World in Data.

Prentice Hall, Englewood Cliffs 1988.

▪ Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide.

Addison-Wesley 2005.

▪ DeMarco, T.: Structured Analysis and System Specification, Yourdon Press, Prentice

Hall, 1979.

▪ Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference

Manual, Addison Wesley, Reading, MA 2004.

Analysis patterns for information models

▪ Coad, P.; North, D.; Mayfield, M.: Object Models: Strategies, Patterns, and

Applications, Prentice Hall, 1996.

▪ Fowler, F.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, MA

1996.

▪ Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Pattern - Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

▪ Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User

Guide. Addison-Wesley 2005.

Requirements Modeling | Handbook | © IREB 57 | 133

4 Dynamic views

Program = data + algorithms! With this simple statement, Nicholas Wirth has summarized a

complex fact in a memorable way. Applying this equation to requirements, in this chapter we

will focus on the desired or required functionality of a system and its behavior (following the

description of information models in Chapter 3).

4.1 Dynamic views of requirements modeling

In contrast to the information models, which can essentially be expressed by one diagram

type (except for syntactic variants), the dynamic views offer a lot of different abstraction

criteria for specifying different aspects of the functionality. This chapter looks at different

types of dynamic views in requirements modeling which are summarized in the following

table (the last one will be addressed in Chapter 5 of this document).

View Meaning

Use case view Decomposition of the functionality of the entire system from a

user perspective into processes triggered externally or by time

(or interactions or sequences of functions), each leading to a

specific added business value for one or more actors in the

system context; presented in the form of use case diagrams

including textual use case specifications for each use case.

Control flow-oriented

view

Specification of sequences of required functions of a system,

whereby the emphasis is on the sequence of execution. This view

is mainly represented by UML activity diagrams with explanatory

activity descriptions.

Data flow-oriented

view

Specification of the required functions of a system, including

input/output data dependencies; represented classically by data

flow diagrams with explanatory descriptions of the functions and

data flows between the functions. UML activity diagrams with

appropriate extensions can also be used.

State-oriented view Specification of the event-driven behavior of a system, including

states of the system, events, and conditions for state transitions.

Represented by state transition diagrams or Statecharts with

explanatory descriptions of states, functions, conditions, and

events that trigger state transitions.

Requirements Modeling | Handbook | © IREB 58 | 133

View Meaning

Scenario view Specification of interactions between actors (people, systems) in

the system context and the system under development (SuD)

that lead to an added business value for one or more actors.

Scenario modeling can be done by way of example (e.g., to

support the elicitation of requirements) or with a claim to

completeness, i.e., all the scenarios which are to be supported by

the SuD are modeled (see Chapter 5).

Table 1: Dynamic views in requirements modeling and their meaning

4.2 Use case modeling

Use cases provide a method for systematically describing functions within the defined

scope from a user perspective. This section introduces the basic elements of use case

models and focuses on a deeper understanding of how to identify and specify use cases.

4.2.1 Purpose

There are many approaches available for breaking the functionality of a whole complex

system down into its parts. The approach of breaking down the overall system into

processes which provide added value for persons or systems outside of the system has

been applied successfully and in many cases (cf. [McPa1984], [JCJO1992], [HaCa1993],

[Cohn2002]). A wide variety of concepts and terms is used for such processes, for example

EPC (Event-driven process chain), use case, or user story in agile practices.

We consider use case models as a representative of these models. Use case models consist

of use case diagrams with associated textual use case specifications. The use case

diagrams provide a graphical overview of the required processes of the system and their

relationships to actors in the system context. A use case specification specifies each use

case in detail by, for example, describing the possible activities of the use case, its

processing logic, and preconditions and postconditions of the execution of the use case. The

specification of use cases is essentially textual—for example, via use case templates such as

recommended in [Cock2000].

The main purpose of use case models is to decompose a complex system into such parts

that can be specified afterwards in detail as independently as possible from each other:

divide and rule. Since the processes (= use cases) can be derived from the context, this

decomposition is neutral with respect to the (existing or planned) inner structure of the

system. This means that it does not take into account any internal organizational boundaries

or software or hardware limitations of the system under development, focusing instead on

the external perspective.

Requirements Modeling | Handbook | © IREB 59 | 133

4.2.2 Model elements for use case diagrams

Figure 31 shows the main model elements of use case diagrams, as used in UML. They are

used to express the system boundary, actors, use cases, and the relationships between

actors and use cases. With regard to the concept of actors, note that actors are always

stakeholders in terms of requirements engineering but many stakeholders are not actors

because they will never work with the system in operation, even if they want to have a say

about the behavior of the system (see [Cock2000]).

Besides the stick figures, various graphical stereotype symbols can be used to express

actors. Among others, the use of a clock symbol for time-triggered processes has proven of

value, as shown in Figure 32.

Note: by drawing the system boundary, is it easy to distinguish clearly between "inside" and

"outside" in use case diagrams. Because of this and since actors are always outside the

boundary, it is easy to recognize actors with any kind of representation even without the

stereotype << actor >>. Many modeling tools allow you to display or hide the stereotype

names like << actor >>. Figure 33 makes use of that simplified notation.

Figure 34: Model elements of use case diagrams

On the right-hand side, Figure 35 shows an example of a use case diagram with these four

basic elements—the system boundary (scope), actors, use cases, and associations.

Notation

System boundary
Name

Name Actor

Name
Use case

«actor»
Name

Name Meaning

An actor can be a person, a company or organization, or a
software or system element (hardware, software or both).

The (unnamed) line between the actor and the use case
indicates that this actor interacts with this use case.

Association

Functionality of the system, needed by an actor that provides
value to the actor. The name should contain a verb, as it
describes a functionality, and an object, to which the
functionality refers, e.g., "monitor velocity".

The rectangle depicts the scope of the system. Actors are
outside the scope. Use cases are inside the scope.

(Alternative)

Name

Requirements Modeling | Handbook | © IREB 60 | 133

Figure 35: Example of a context diagram (left) and the corresponding use case diagram (right)

4.2.3 Use case diagrams and context diagrams

These two diagram types have similar content but different priorities. Both define a name for

the system under development and the system boundary (i.e., the distinction between the

scope and context) but with different precision.

The focus of the context diagram is the precise functional definition of the interfaces to all

neighboring systems. Good context diagrams contain (in addition to the system as a black

box) all neighboring systems (people, IT systems, devices) that act as a source or sink for

information of the system under development.

If a context diagram exists in which all neighboring systems and actors of the system under

development are shown, it may be sufficient to create a use case diagram that only contains

actors which trigger the execution of use cases.

These actors are called process-triggering actors; they justify the existence of use cases. In

other words, without the respective actor there would be no demand for this use case.

Therefore, if a context diagram exists, further actors that are involved in the use case (i.e.,

during the execution of the process after the trigger by an actor) are not necessarily drawn in

the use case diagram. This would only increase the complexity of the use case diagram and

detract attention from the fact that the use case view mainly serves to decompose the

overall functionality of a system into disjoint processes from a user perspective.

Early
Warning
System

Sensor

Operator

Admin

Statistics
System

Day Results

Protocol

Warning
Sensor
Data

Operator
Request

System
Messages

Early Warning System

Read
sensor data

Sensor

Operator

Update
thresholds

Show detailed
Info

Acknowledge
alarm

Output compr.
Data

Output
warning

Output
protocol

Admin

Statistics
System

Requirements Modeling | Handbook | © IREB 61 | 133

Figure 36: (a) Use case diagram with all neighboring systems, (b) Use case diagram with inputs

and outputs

Recommendation 1: Use the strength of both diagram types to obtain on one hand an

interface description that is as complete as possible (using the context diagram), and on the

other hand, to achieve a rough outline of the functionality from a user perspective (in the

form of use cases) that provides a good overview of the required overall functionality and

allows a separate, additional specification of each use case.

Recommendation 2: If you only model use case diagrams without a context diagram (e.g.,

because the tool used does not support explicit context diagrams and the context diagram

should not be expressed with a UML class diagram), then all neighboring systems of the

system should be included in the use case diagrams. The additional use of graphical layout

options allows an easy distinction between actors triggering use cases and other affected

neighboring systems (e.g., by arranging the actors on the left and the other neighboring

systems on the right). However, such an "extended use case diagram" still does not have the

expressive power and precision of a context diagram because in the use case diagrams, the

identifiers of the inputs and outputs are missing.

Early Warning System

Read
sensor data

Sensor

Operator

Update
thresholds

Show detailed
Info

Acknowledge
alarm

Output compr.
Data

Output
warning

Output

protocol

Admin

Statistics
System

Early Warning System

Read
Sensor data

Sensor

Operator

Update
thresholds

Show detailed
Info

Acknowledge
alarm

Output compr.
Data

Output
warning

Output

protocol

Sensor
Data

User need

Alarm
Acknowledgement

Admin

Statistics
System

Day
Results

Warning

Protocoll

Requirements Modeling | Handbook | © IREB 62 | 133

These could be written next to the directed associations between actors and use cases (see

Figure 36, b). If we do this, however, the diagram becomes overcrowded and is more difficult

to understand. This weakens the major purpose of the use case model.

4.2.4 Finding use cases

In order to find the relevant use cases of the system, it is often useful to focus first on the

triggers for possible use cases. Triggers of use cases are events in the system context to

which the system under development should adequately respond by executing a process

which provides added business value to one or more actors in the system context.

[McPa1984] divides these triggers into two categories:

▪ External triggers: An actor (e.g., a neighboring system) wants to trigger a process in

our system. Our system will notice this when data coming from the neighboring

system crosses the system boundary.

For example, "A guest wants a room in a hotel system". Once the request is received (i.e., the

corresponding event in the system context happens), the hotel system should offer a suitable

room to the guest.

▪ Time triggers: It is time to execute a process in our system, for example, at specific

times or on specific calendar days. By using time events to start a process, there is no

need for data to cross the system boundary. It is only necessary that the specified

point in time is reached.

For example, in the hotel system: "It is 6pm and thus time to cancel all no-shows and make the

rooms available for sale again." Monitoring of internal system resources is also considered as a

time event, for example "It is time to reprint our hotel catalog."

4.2.4.1 Continuity of processes from system boundary to

system boundary

Each use case should be modeled in a way that the process—once triggered—is considered

until its end. The process of a use case should not be interrupted within the system (e.g., at

already known software component or organizational boundaries within the system).

The granularity of a use case is therefore determined by the complete reaction of the

system under development to the trigger from the system context, that is, the primary

actors get their added business value after the complete execution of a use case.

Requirements Modeling | Handbook | © IREB 63 | 133

4.2.4.2 Pragmatic rules for the granularity of use cases:

the 80-20 rule

During use case modeling, the question of adequate granularity for use cases is often raised.

In which situations should different use cases be merged into one use case? A strong

indication for merging use cases is the criterion regarding whether all processes provide the

same added business value.

In large and complex systems, it makes sense to analyze the various use cases. In the case of

two use cases having 80% identical processes and similar added business values (e.g., when

the processes are nearly identical but are executed with different data), only one use case

should be modeled for both processes and the differences between the processes should be

documented in the use case specification (see Section 4.2.5).

However, in the case of two use cases having only 20% in common or if many different

process steps are needed in the use case description, then separate use cases should be

modeled. In the case of a "similarity" of 50%, a decision is often difficult. Ultimately, the

similar added business value should be the determining factor for the decision about

whether to merge multiple use cases.

4.2.5 Specifying use cases

The popularity of use cases can be explained by the fact that Ivar Jacobson has given the

natural language back to the stakeholders for talking about their requirements. He proposed

describing the desired process of a use case in natural language. UML does not make any

suggestions about the style of use case descriptions. Over the years, many proposals have

been made to resolve the weaknesses of purely natural language process descriptions. In

particular, [Cock2000] suggests different levels of abstraction of use case descriptions for

different groups of readers.

The textual specification of a use case should document the essential inputs and outputs

(i.e., data, see also Chapter 3) which are intentionally not shown in the use case diagram.

Detailed textual use case specifications should also describe at least the main flow of control

and, if applicable, alternative paths from the perspective of the primary actor (i.e., main and

alternative scenarios, see also Section 5.2). Furthermore, they should also specify

preconditions and postconditions of the use case execution, which can typically be

characterized by states and state transitions (see Section 0). In addition, possible exception

events and associated exception scenarios should be documented (see also Section 5.2).

Table 2 shows an example of a template for the detailed textual specification of a use case.

Requirements Modeling | Handbook | © IREB 64 | 133

Section Content

ID Unique identifier of the use case in the development project or

program

Name Name of the use case in the model (this name is shown in the use case

diagram)

Trigger Event that triggers the execution of the use case

Preconditions Preconditions that must be fulfilled before execution of the use case

Postconditions Set of postconditions that are fulfilled after successful execution of

the use case

Input data Input data of the use case

Output data Output data of the use case

Result Result of the use case, i.e., the added business value which is provided

to the actors after execution of the use case

Primary actor Actor who receives the significant part of the added value of the use

case

Further actors Actors who are involved in the execution of the use case

Main scenario Normal sequence of activities (execution flow in 70% of all cases, for

example). See also Section 5.5.1.

Alternative

scenarios

Set of alternative activities. Each alternative process also leads to a

successful execution of the use case (e.g., in 30% of cases). See also

Section 5.5.2.1.

Exception

scenarios

Set of exception scenarios. These scenarios are executed when an

exceptional situation occurs in the use case process. These scenarios

ensure a controlled error and exception handling. See also Section

5.5.2.5.

Table 2: Example of a template for textual specification of use cases

4.2.6 Structuring Use Cases

UML provides three additional means of expression for structuring the use cases of a

system. Figure 37 shows the notations for these three UML elements and briefly outlines

their meaning.

Requirements Modeling | Handbook | © IREB 65 | 133

Recommendation: Although these structuring elements do exist in the syntax of UML, you

should use them very carefully and not too often. Avoiding too many includes, extends, and

generalizations keeps the use case diagrams easy to understand and serving their purpose.

More complex relationships between use cases can often be expressed in a more

understandable and more precise way by using other diagram types, such as activity

diagrams (see Section 4.3.3). Both the inclusion of sub-processes (using "Include") and the

condition-dependent extension of use cases by sub-processes (using "Extend") can be

expressed more precisely in activity diagrams.

Figure 37: Model elements for structuring use cases in use case diagrams

When applying the model elements mentioned above to structure use cases of a system, the

following rules of thumb should be considered:

▪ An include relationship can be used, for example, to explicitly document that several

use cases have an identical sub-process. Among other benefits, this saves extra work

during specification. Identical sub-processes can also be expressed by using

activities with the same name in the activity diagrams which document the process of

a use case. Doing this means that there are no additional elements in the use case

diagram. The use case diagram remains clear and legible.

▪ An extend relationship can be used to document that an additional sub-process must

be executed within the "normal" process of a use case under a certain condition. It is

important that the extension point, that is, the condition under which the sub-process

is executed in addition, is formulated as precisely and understandably as possible.

Since this is often only possible in the use case specification (or in the corresponding

activity diagram), it is useful not to model such an extension explicitly in use case

diagrams.

Notation

Include relationshipName Meaning

Extend relationship

The included process is a reused sub-process of both use
cases 1 and 2. The dashed arrow with the stereotype
<<include>> points from the including main process to the
included sub-process.

The sub-process extends the use case under conditions that
lead to special or exeptional cases. The dashed arrow with the
stereotype <<extend>> points from the extending sub-process
to the extended main process.

The main process is more precisely specified by
specialized processes. The specialization is, as in
information models, indicated by a hollow triangle at the
side of the generalized process.

Name

Name

Notation

Notation

Generalization relationship

Use-Case 1

Use-Case 2

Sub-process

<<include>>

<<include>>

 Extension points:
Disturbance

Use-Case 1

Sub-process
<<extend>>

[Disturbance]

Specialization 1

Specialization 2

Use-Case

Requirements Modeling | Handbook | © IREB 66 | 133

▪ By generalizing (or specializing) use cases, we can express that specific processes of

one or more use cases can be generalized. In most cases, such relationships are

modeled when a use case diagram has multiple use cases whose specific processes

can be abstracted to a more general level. Figure 37 shows how to model a

generalization.

Experience shows that generalizations are rarely used in use case diagrams since this

form of abstraction is rather a concept of information structure modeling in which,

for example, common attributes are abstracted by the creation of superclasses (see

Section 3). The description of more abstract (generalized) processes compared to

their specific (specialized) forms is usually difficult in the context of use case

modeling. This model element should therefore only be used after careful

consideration and with very specific intentions.

4.2.7 Packaging use cases

For systems with a large number of use cases, it is possible to increase the readability of the

use case model by using the following methods:

▪ Group the use cases according to their business subject

▪ Create a use case diagram for each group

▪ Locate the use cases of a group in the same part of the use case diagram

In UML, it is possible to package use cases (similar to packaging other elements of UML). The

criteria for packaging can be chosen freely. Usually, logically related use cases (e.g., use

cases with a similar added business value) or use cases relating to the same topic (e.g., all

use cases for warehouse management in an ERP system) are packaged. Packaging is mainly

used to improve handling and readability of a use case model with a large number of use

cases.

4.2.8 Summary

Use case models are usually a first step in systematically understanding and specifying the

overall complexity of a system (from the context diagram). A textual use case specification

is associated with each use case. This specification is usually sufficient to describe the

required functionality for simple processes.

For complex processes, this specification is the starting point for the creation of more

detailed diagrams that document the required behavior of the system precisely.

The corresponding diagram types are presented in the next sections.

4.3 Data flow-oriented and control flow-oriented modeling

of requirements

The core elements of the models from the dynamic view are the functions which should be

provided by the respective system. We identified these elements in the context diagram

and/or in the use case diagrams and subsequently specified them initially on a high level.

Requirements Modeling | Handbook | © IREB 67 | 133

We will now specify the elements in a more detailed and more precise way by using UML

activity diagrams and data flow diagrams (as used, for example, in the Structured Analysis

approach [DeMa1979]). Both diagram types will be introduced in this chapter.

The notation element for functions is (historically) different in the two diagram types (see

Figure 38) but the purpose of the two diagram types in requirements engineering is the

same: a decomposition of the required functionality into smaller functions and the

description of the interactions between the smaller functions to provide the functionality

required on the higher level.

Figure 38: Modeling of functions in data flow and activity diagrams

There are two basic concepts for the interaction of functions - data and control flow, which

are motivated and explained in the next section. Here, the two perspectives for "control flow

thinking" (here: UML activity diagrams) and "data flow thinking" (here: data flow diagrams)

will be considered in more detail.

4.3.1 Purpose/historic overview

One of the earliest models in IT is the flow chart (e.g., according to DIN 66001). Flow charts

were used to create program flow diagrams to visualize program logic (at code level). They

showed functions (as boxes), alternatives and branches (as rhombuses), and jumps (with

anchor links). These diagrams supported programmers in understanding the structure of

large programs.

There are two basic approaches for specifying functions and their related interactions

further: data flow and control flow. Each of these approaches focuses on different aspects

and the approaches are justified and explained in this section. This Handbook describes only

one representative for each approach: UML activity diagrams for the "control flow thinking"

and data flow diagrams for the "data flow thinking."

Figure 39: Control flow between functions

Diagram type Notation

Activity Diagram

Data-Flow Diagram

Terms used

Process, Bubble

Activity, Action

Name

Name

Function 1 Function 2 Function 3

Requirements Modeling | Handbook | © IREB 68 | 133

In the late 1970s, books and publications on "Structured Analysis" [GaSa1977, DeMa1979,

RoSc1977] were published. At this point, the focus of analysis approaches changed from

considering the control flow to modeling the data flow. Data flow diagrams also examine the

functions of the system (usually represented as circles, in some notations as rectangles with

rounded corners, or as rectangles).

Nevertheless, the (labeled) pointers between the function blocks have another meaning. The

pointers in the data flow diagrams represent inputs and outputs of functions, that is, the data

flow between the functions and not the control flow (see Figure 40).

Figure 40: Data flow between functions

In data flow-oriented views, all functions can be active simultaneously. The data flow

specifies only causal dependencies, meaning that a function can only work when its inputs

are available. However, in contrast to a control flow, no explicit sequence of the functions is

modeled.

With the introduction of UML in the late 1990s, the emphasis on control flow based on

activity diagrams was introduced again. UML activity diagrams are very suitable for

modeling process flows. They visualize the control flow between activities or actions of the

system. If the sequence of activities is sequential, the follow-on action can only start when

the preceding action is completed. Alternative control flows can be expressed using decision

points. Concurrent control flows can also be expressed.

In activity diagrams, functions are represented by boxes, control flows by arrows, and

decision points by diamonds.

To summarize: complex required functionality can be modeled either in a control flow-

oriented way (by using activity diagrams) or in a data flow-oriented way (by using data flow

diagrams). We should focus not on the choice between the two diagram types but rather on

the fundamental thinking in data flows or in control flows. Both concepts are useful and as

explained below, you can also represent data flow thinking in UML activity diagrams and

conversely, express relatively linear processes with data flow diagrams.

Function 1

Function 3

Function 2

a

b

e

d

e

f

c

Requirements Modeling | Handbook | © IREB 69 | 133

Note: in some modeling approaches of the dynamic view, such as in Petri nets, the proposal is to

model the data flow and control flow together in the diagrams. This often leads to a higher

complexity in the diagrams, making them difficult to understand.

4.3.2 Requirements modeling with data flow diagrams (DFDs)

Data flow diagrams are often used to model requirements from a data flow-oriented

perspective. They model the functionality of the system under development using functions,

data stores, data/information flows, as well as sources and sinks.

4.3.2.1 Model elements of data flow diagrams

Figure 41 summarizes the main model elements of data flow diagrams.

Figure 41: Model elements of data flow diagrams

Figure 42 shows an example of a navigation system using the four elements that can be used

in data flow diagrams. It also provides further information on the semantics.

Name

Name

Notation

Nodes

(Process, Function of the System)

Neighboring System/Actor

(also Terminator, Source or Sink)

Meaning

Depicts persons, organizations of technical

systems, equipment, sensors, actuators from

the system environment that are source of

sink for the information to / from the system

Depicts a desired functionality in the

system

Data flow

Depicts moving data (inputs, outputs,

intermediate results). Not only data flows can be

depicted but also material flows or energy flows.

Name

Name

Name

Depicts data at rest, i.e., information that is

stored for a certain period and that is not

directly flowing between functionsData store

Requirements Modeling | Handbook | © IREB 70 | 133

Figure 42: Example of a data flow diagram (part)

Data flows (such as GPS signal or desired destination) represent data in motion.

Data stores (such as route parameters, traffic messages) represent data at rest. Data in

data stores can be created and updated by one set of functions and read (non-

destructively) by another set of functions. It is persistent data. The period for which the data

is to be stored is not specified.

The fourth element (the rectangles, in the example "sensor" and "driver") represents

neighboring systems of the system under development. In the Structured Analysis approach,

they are called terminators or sources and sinks, depending on whether they provide inputs

or receive outputs. A terminator may be both a source and a sink.

These terminators are usually listed completely in a context diagram (see Section 2.2). From

this perspective, the classical context diagram is a specific data flow diagram in which all

neighboring systems (or actors) and all input and all output data are modeled; however, the

functionality of the system under development is compressed into a single node. If the

neighboring systems (or actors) are already shown in the context diagram, then in the refined

data flow diagrams, often no terminators are shown and only the associated data flows at

the system boundary are modeled (see Section 4.3.6).

For data flow diagrams, the following fundamental rule is valid: All input and all output data

must be shown in the diagram.

The data flow specifies causal dependencies, which means that a function can only work

when its inputs are available. However, in contrast to a control flow, no explicit sequence of

the functions is modeled.

If there is a need to express the sequence of functions explicitly, data flow diagrams can be

supplemented by state transition diagrams. State transition diagrams use events and states

to express the sequence of functions.

Determine
Position

Traffic
Messages

Route
Parameters

Calculate
Route

Determine
Destination

Sensor

Driver

Suggested Route ...

Requirements Modeling | Handbook | © IREB 71 | 133

The collaboration between data flow diagrams and state transition diagrams can be

illustrated by the metaphor of a string puppet or marionette. The functions in the data flow

diagram correspond to parts of the puppet (such as arms, legs, head) which can be moved

freely and relatively independently of each other. A state machine corresponds to the

wooden cross with the strings to the moving puppet parts. The wooden cross makes a

(moving) connection between the moving parts of the puppet, whereby the puppetry can

restrict the possible movements of the puppet parts.

4.3.2.2 The relationship between data flow modeling and use

cases, control flow modeling, and information

structure modeling

The data flow-oriented modeling of requirements using data flow diagrams has a substantial

connection with the context diagram, the use case view, and the information structure view.

Use cases are a tool for systematically specifying the functions within a defined scope from

the user perspective and at a high level. During requirements engineering activities, these

functions need to be detailed and decomposed into more detailed system functions and

their dependencies.

The system functions of a use case, including data dependencies between the functions and

with actors (terminators), can be modeled using data flow diagrams. The more detailed

system functions can be identified during the functional analysis of the use case scenarios

(see also Section 5.5.3). The structure of the data, which is modeled in the data flow

diagrams as data flows ("data in motion") and as a data store ("data at rest"), is defined in the

diagrams of the information structure view (see Section 3.1).

4.3.3 Requirements modeling with activity diagrams (ADs)

UML activity diagrams can be used to model requirements from the control flow

perspective. Activity diagrams specify the required processing logic of use cases, system

functions, or processes that need to be delivered by the system under development so that

it fulfills its purpose during operation.

Requirements Modeling | Handbook | © IREB 72 | 133

4.3.3.1 Model elements of activity diagrams

Figure 43 summarizes the main model elements of activity diagrams.

Figure 43: Model elements of activity diagrams

Activity diagrams document the control flow between activities or functions of the system.

The control flow starts at the start node and ends at the end node(s). The diagrams can be

used to model sequential processes, branches of the control flow (using decision points), and

concurrent processes (using synchronization bars). Concurrent processes contain activities

which can be processed independently and therefore potentially at the same time.

They are particularly important for the system analysis because in real systems, many things

can happen simultaneously or independently of each other and not strictly sequential.

For the exact syntax and semantics of the notation elements, please refer to advanced

books on UML, such as [RuJB2004, BoRJ2005]. Figure 44 illustrates the use of the typical

Requirements Modeling | Handbook | © IREB 73 | 133

model elements of activity diagrams and the essential syntactic rules with an abstract

example.

Figure 44: Using the model elements of activity diagrams

4.3.3.2 Modeling object and data flows in activity diagrams

and their relationship to information structure

modeling

Activity diagrams also allow us to model object or data flows, as shown in Figure 45 and

Figure 46. This is done by inserting objects (see Figure 45) or parameters of the activities

(see Figure 46), as well as all accesses to data stores, are included in the diagram. In

contrast, activity diagrams do not define how much or how little data is displayed in the

diagrams.

Figure 45: Modeling object flows in activity diagrams

The example in Figure 45 shows that the activity "Calculate Route" requires an input from

the objects "Maps" and "Traffic messages". However, it does not show the main output (the

Start node
End node

Decision

Merge

Fork

Join

Independent/concurrent

activities/actionsAlternative

control flows

Alternative

Kontrollflüsse

Determine
Position

Enter
Destination

Calculate
Route

<<datastore>>
Maps

<<datastore>>
Traffic messages

Requirements Modeling | Handbook | © IREB 74 | 133

route or several route suggestions). It also does not show any route parameters used (such

as "fastest route", "shortest route").

In contrast to data flow diagrams, where extreme importance is placed on the completeness

and consistency of the models, UML diagrams are supposed to be "useful" mainly for the

communication between the persons involved. The completeness of the specification can

be achieved with supplementary activity descriptions.

Figure 46: Modeling flows in activity diagrams using pins

The "pins" at the functions represent the inputs and outputs of the function. Thus,

relationships, such as that "Determine Position" creates a "Position" as output and "Calculate

Route" requires a "position" as input, can be represented graphically.

By using activity diagrams, the modeler can choose to include no data (objects) in the

diagram or to intentionally add some data (objects) to highlight certain aspects. It is

important to note that all inputs and outputs must be fully specified in the requirements

specification (at the latest in a textual specification of each function, see Section 4.3.5). The

structure of data or classes and their dependencies to each other should be modeled in the

information structure view (see Section 3.1).

4.3.3.3 Relationship of activity diagrams to use case and

scenario modeling

Activity diagrams are often used to specify the processing logic of use case scenarios in

detail (see Section 4.2.5). Activity diagrams are created to visualize the scenarios, which are

processes with activities and processing logic. As long as the diagram remains

understandable, the main scenario can be modeled jointly with the alternative scenarios and

the exception scenarios as part of the same diagram.

This is typically done by using decision points, where the control flow branches. Depending

on a condition, either the process logic of the main scenario or the process of the alternative

flow/exceptional flow is executed.

Figure 47 with an example of a control flow related to a use case. There are many decision

points where it is possible to switch between the scenarios. In this example, there is one

switching point before the activities "Enter destination address via keyboard" and "Say

Determine
Position

Enter
Destination

Calculate
Route

Maps

Traffic messages
Destination

Destination

Requirements Modeling | Handbook | © IREB 75 | 133

destination address". These activities belong to different scenarios. Exceptional scenarios

can be modeled using decision points. Figure 47 shows this at the last decision point. It

defines that in the case of the exception "Map information not available" the activities "Issue

error message" and "Shut down system" are performed.

Figure 47: Modeling the control flow of use cases using activity diagrams

To model exceptions which do not appear at a specific location in the control flow but in an

area of the control flow or during execution of the whole use case, signal inputs and outputs

and interruptible regions may be used (see Section 4.3.7).

For all UML diagrams, it is important that they are easy and understandable. In this case, they

should visualize the processing logic of a use case in a way that allows the reader to easily

recall the context. The recommendation is therefore to show only a few aspects (scenarios)

in one diagram. Further aspects (scenarios) can be shown in additional diagrams. It is also

possible to create a diagram with the main scenario and further diagrams for each

alternative scenario together with the main scenario. The textual description may contain

further details.

1. Switch on

navigation system

2. Determine

GPS coordinates

2a2. Enter

current postion

4. Enter destination

address via keyboard

4a1. Say

destination address

5. Calculate

route length

6. Display

route length

Fahrer Navigation system

[GPS coordinates

available]

[GPS coordinates not available]

3. Request

destination

4a2. Interpret

voice entry

2a1. Request

current position

5b1. Issue

error message

[Map information

not available][Map information

available]

[Desti-

nation

not

found]

ad Navigation

5a1. Issue advice

5b2. Shut down

system

Control flow of the

main scenario

Control flow of an

alternative scenario

Control flow of the

exeption scenario

on the event "Map

information not available"

ad Navigate to destination Total control flow

of the use case

Driver

Requirements Modeling | Handbook | © IREB 76 | 133

4.3.4 Decomposing or combining functions

Both types of diagrams (data flow diagrams and activity diagrams) support the

decomposition of complex functions into simpler functions as well as the combination of

simpler functions to form more complex functions. In other words, data flow diagrams and

activity diagrams can represent hierarchies of functions (see Figure 48 and Figure 49).

This abstraction mechanism allows us to structure complex issues in order to keep them

understandable and manageable. Within the dynamic view of requirements modeling, this

hierarchy is a powerful tool for controlling the scope and complexity of the systems under

development.

In Figure 48, the complex function "Determine Destination" of a navigation system is

decomposed into five steps (which are not specified in the example diagram).

Figure 48: Hierarchical decomposition and combination of functions in DFDs

In Figure 49, the complex activity B is decomposed into a detailed process consisting of five

activities. Conversely, the detail activities B1, B2a1, B2a2, B2b, and B3 can be combined to

form the aggregated activity B.

 1.2 Determine Destination

1.2.1
1.2.3

1.2.2

1.2.5

1.2.4

Maps

Determine
Position

Traffic
Messages

Route
Parameters

Calculate
Route

Determine
Destination

Sensor

Driver

Suggested Route ...

Requirements Modeling | Handbook | © IREB 77 | 133

Figure 49: Decomposition of a function in an activity diagram

In addition to content-based criteria (such as a technically strong relationship, which is often

manifested in finding a good name for the whole of the detail activities), very pragmatic

criteria are applied for decomposition or combination. One criterion is usually that the

diagram should fit on one page of a document. Furthermore, most methods recommend

modeling no more than 7 ± 2 functions per diagram.

4.3.5 Textual function specifications

How "far" (level of detail) should the functions be decomposed in data flow diagrams or

activity diagrams? In other words: when should the decomposition of functions stop? A

simple heuristic rule is the length of the required function description. If the precise

specification of the requirements of a function needs more than a half-page description, the

function should be refined again to avoid natural language specifications that are too large.

If the diagram already expresses everything that needs to be stated, then you have probably

decomposed too far. Models are easier to understand and read if you do not model the last

one to two decomposition levels and instead, specify the functions in text form (for example,

on half a page). It is also possible to refine a function (activity) by assigning a limited number

of three to seven simple, natural language requirements which specify the considered

function in detail.

Example: Textual description of the function "Determine Destination" (see Figure 48)

Function: determine destination

Input: destination selection (done by the user of the navigation system), map

Output: desired destination

The function should provide the user with four options for selecting a destination:

- By entering an address using the keyboard

- By entering an address using voice entry

- By selecting from a list of stored addresses

- If a map is displayed, by selecting a destination via the touchscreen

Requirements Modeling | Handbook | © IREB 78 | 133

For most users of these diagrams, the above-mentioned refinement level with a

specification on half a page is sufficient to understand the functional requirements and to

systematically derive test cases. This is especially true for testers who need to verify, after

completion of the system development, whether the system in operation implements the

requirements completely and correctly.

4.3.6 Ensuring consistency between requirements at

different abstraction levels

A requirements model contains diagrams and textual specifications at different levels of

abstraction (see Section 0). It is important to keep the requirements at the various levels of

abstraction consistent with each other. As part of the data flow view, such consistency

conditions have been introduced in the form of "balancing rules" (cf. [DeMa1979]).

These consistency rules between diagrams at various levels of abstraction can be adopted

in the same way for activity diagrams:

▪ Inputs and outputs of a function at one level must be consistently present as inputs

and outputs at the next lower level. This begins with the context diagram as the most

abstract representation. Each decomposition of the context diagram must include all

interfaces that were already included in the context diagram. The inputs and outputs

at the next lower level do not need to have the same name because data can be

decomposed, as can the functions. For example, on the higher level, we find the

output "statistics" and at the next lower level "product statistics", "regional statistics",

and "sales statistics". This decomposition is usually described in a glossary (or data

dictionary) or modeled in the information structure view. The ground rule is that the

higher level may contain more abstract concepts which are specified more precisely

during refinement.

▪ A special rule applies to the balancing of data stores: data stores should be

introduced only at that level of abstraction where they offer an interface between at

least two functions. In other words, a data store which is written and read by the same

function should be hidden inside the function (i.e., it should be shown only in a

refinement of this function). A data store should not be shown in a diagram where it is

needed only by one function. From the abstraction level at which the data store is first

modeled, the read or write access to this data store must be repeated at each lower

level.

Even though activity diagrams usually do not model data flows and data stores, the

balancing rules should be considered. The review/verification of requirements must cover

both the diagrams and the supplementary descriptions. You have to check that the

refinement of diagrams and specifications is consistent at all the different levels.

Requirements Modeling | Handbook | © IREB 79 | 133

4.3.7 Interruptible activity region and receiving/sending

messages

Using an example, this chapter introduces the last two model elements for activity diagrams

which are relevant for requirements engineering: the interruptible activity region and the

receiving/sending of messages:

Example:

A user should have the option to select a person for whom the account transactions should be

displayed. While the transactions are displayed, the user can close the window or select another

person. New transactions can also be received by the system. Thus, the content in the window

should be updated automatically.

In Figure 50 the desired behavior of the system is modeled using an activity diagram. The

box with dashed lines defines the interruptible activity region. All actions that are in the

diagram can be interrupted when signals are received (in the example, only the activity

"Display account transactions"). If a signal receipt is modeled within the interruptible activity

region, all actions in the region will be interrupted when a signal is received.

To better distinguish the signals and to further specify the trigger of the signal, the

stereotypes "User action" and "System event" are used. After receipt of a signal (and the

interruption of the current action), if necessary, another action is executed and the cycle can

start again (here: after receiving the signal "New transactions").

Requirements Modeling | Handbook | © IREB 80 | 133

Figure 50: Example of the modeling of signals in an interruptible activity region

The user terminates the activity by clicking on "Cancel". To complete requirements analysis,

the activities in this diagram should be further specified by refined activity diagrams or

textual specifications. The following must be specified:

▪ exactly how and in which sequences the transactions are to be displayed

▪ which options the user has for selecting another person

Signals can also be created and sent (and not only received) as part of an activity diagram.

An example activity diagram for a type of function known as heartbeats is provided in Figure

51. A sign of life is sent out every second. This is triggered by a "Time event" (the hourglass),

which stops the flow each time for the specified time (one second). Again, an interruptible

activity region is used to indicate when the heartbeat should stop.

Requirements Modeling | Handbook | © IREB 81 | 133

Figure 51: Example of heartbeats

4.3.8 Comparison of data flow diagrams and activity

diagrams in requirements modeling

The concepts behind both diagram types and the available model elements have a big

influence on our thinking. In activity diagrams it is easy to express: "F1 is executed before F2"

(indicated by an arrow). In data flow diagrams, it is easy to express: "F1 produces D as output

data and F2 needs D as input data" (with a labeled arrow).

Requirements Modeling | Handbook | © IREB 82 | 133

Activity diagrams Data flow diagrams

Emphasis on control flow (processing

logic)

▪ Sequences

▪ Branches after decisions

▪ Concurrency (fork/join)

Emphasis on input/output dependencies

(data dependencies)

▪ Who produces what?

▪ Who needs what?

Inputs and outputs have less importance Control flow (processing logic) has less

importance

In the case of sequential activities, the

completion of one activity triggers the

activation of the next activity

Availability of inputs allows the execution of a

function (process)

Strict time flow (apart from concurrent

control flows, i.e., fork/join)

No implied sequence (except for the causal

dependency induced by data dependencies)

Table 3: Differences in requirements modeling with data flow diagrams and activity diagrams

To summarize: the emphasis in the modeling languages has shifted back and forth over the

decades. It started with the emphasis on control flows (in flow charts and program flow

diagrams). Later, the emphasis changed to data flows (in DFDs) and back to control flows

again (with UML activity diagrams).

Both concepts—control flow and data flow—are useful tools to support thinking,

visualization, and specification of required functions and their dependencies. A requirements

engineer should be familiar with both concepts and know how they can be used. Due to the

current dominant position of UML and the corresponding tools, you will probably use activity

diagrams. However, you should be able to deal with data flows and data stores in this

notation too.

4.4 State-oriented modeling of requirements

Requirements are mostly derived from dynamic views of the system. The requirements of a

system also can be modeled using a state-oriented view, with a finite set of states and

associated state transitions. This view is particularly important for systems whose behavior:

▪ Specifically depends on what has been done already (history)

▪ Is strongly influenced by asynchronous events

Requirements Modeling | Handbook | © IREB 83 | 133

4.4.1 Purpose

State-oriented modeling allows clear specification of preconditions and postconditions.

These conditions are required for the execution of a function (e.g., a use case or an activity in

the activity diagram). This type of modeling can be applied to the total system or parts of the

system. If it is used to model parts of the system, the model can be arranged in a similar way

to the use cases distinguished (see Section 4.2).

In addition to modeling the states of a system, state machines can also be used to model the

states of a branch-specific object that is described in the information view (see Chapter 3).

As a result, the effect that different system functions have on that object is shown in an

overview within one state machine. Compared to the purely functional view, for example, in

the process-oriented view, a redundancy is introduced which serves one of the following

purposes:

▪ The consistency in the specification of the functions is validated.

▪ A focused view of an object increases the comprehensibility and traceability.

It is important when dealing with state machines that the topic under consideration (the

matter at hand) for which the states are modeled is determined consciously. It may be one of

the following:

▪ The system under development

▪ Subsystems of the system

▪ The objects of a class from the information view

4.4.2 The term "state"

The term "state"—as generally used in requirements engineering—is derived from the theory

of automata: a state is a summary of certain conditions that apply for an object of

observation over a period of time.

But where do the “conditions” for an object come from?

If the item in question is an object (an instance of a class), then the possible states are

described by combinations of possible values of its attributes. Figure 52 shows an example

of a car with six possible values for the color and two possible values for the attribute "Ready

to drive". As a result of these potential conditions, a total of 12 potential states for the car are

available.

Figure 52: Definition of a car (a)

Requirements Modeling | Handbook | © IREB 84 | 133

Extending the example to another attribute that specifies the mileage, we encounter a

problem if this attribute can have an infinite number of possible values (see Figure 53). The

number of potential states is therefore unlimited, and this can no longer be represented

graphically in the form of a finite state machine.

Figure 53: Definition of a car (b)

Methods for reducing the number of states to a manageable level are described in Section 0.

The theory of finite automata (Moore or Mealy automata) is not used widely in requirements

engineering. Statecharts, introduced in 1987 by Harel [Hare1987], or the extension of Harel

Statecharts in the OMG UML [OMG2010b, OMG2010c] and the OMG SysML [OMG2010a] are

used instead.

The Harel Statecharts differ from the original finite state machine mainly regarding the

following three points, which greatly simplify the modeling of the state-oriented view of

requirements engineering:

▪ More extensive ways of linking functions to states and state transitions

▪ Introduction of conditions (guards) which, for example, have to be met before the

transition

▪ Introduction of the possibility of hierarchical state machines and orthogonal regions

The second point in particular has huge implications for modeling the state-oriented view, as

it is no longer necessary to model the entire history in the form of conditions. This reduces

the number of observed states and the complexity of the charts created.

State machines have one property in common: the object of the state machine is always in a

defined state at the moment of observation. This implies that the transition between two

states has no temporal aspect (consumes no time).

In a real life implementation, however, for example in software, these transitions do consume

time. Therefore, the phrase at the beginning of this paragraph must be expressed a little

more softly: an object can respond to events from the outside only if it is in a defined state.

With respect to the implementation, this means that the incoming events must be buffered

for the short duration of the transition. This ensures the required semantics of a state

machine.

Requirements Modeling | Handbook | © IREB 85 | 133

4.4.3 A Simple Example

The diagram in Figure 54 contains a simplified state machine for a windshield wiper system in

vehicles. In this example, the main model elements for modeling a state-oriented view are

presented. They are presented in more detail in the following sections along with the notation

elements of UML.

Figure 54: State diagram for a wiper system

4.4.4 Model elements of state machine diagrams

In this section, we present the most commonly used model elements for modeling a state-

oriented view. We use the notation of UML. For more notation symbols and explanations, see

[OMG2010b, OMG2010c], and [BoRJ2005].

Requirements Modeling | Handbook | © IREB 86 | 133

Notation Name

Simple state

Transition

 Initial state

Final state

Composite state

Sub-machine state

Orthogonal regions

Figure 55: Modeling constructs of state machines (detail)

Requirements Modeling | Handbook | © IREB 87 | 133

4.4.4.1 Simple state

Syntax and semantics

In UML, a simple state is represented with the notation element shown in the following figure:

Figure 56: Notation of a state

A state should always have a name. In addition, in this state you can specify which functions

are called. In UML, the types of function calls listed below are defined in a state and the italic

identifiers are defined with keywords with specific semantics. The identifier "function" refers

to the function that is executed.

▪ Entry behavior: entry/function: When a state is entered, the function is executed. This

function cannot be interrupted.

▪ Exit behavior: exit/function: When a state is exited, the function is executed. This

function cannot be interrupted.

▪ State function: do/function: While the object of observation is in the state, the

function is executed. This can be interrupted by a trigger which leads to a state

change.

▪ Triggered function: trigger [guard]/function: When the trigger occurs and if the guard

is true, the function is performed without the object exiting the state.

▪ Delay: trigger [guard]/defer: If an event in the deferred event list of the current state

occurs, the event is deferred for future processing until a state is entered that does

not list the event in its deferred event list (see Section 4.4.4.2)

For the states, the following rules apply:

▪ A state is entered when a transition is passed through that leads to this state as the

end point (see Section 4.4.4.2).

▪ A state is exited when a transition is passed through that leads away from the state.

▪ A state becomes active as soon as it is entered. When a state is exited, it becomes

inactive.

▪ As soon as a state is entered, the entry behavior (here: function 1) is executed. When a

state is exited, the last thing to happen is the execution of the exit behavior

(here: function 2).

▪ The state behavior of a state ("do" behavior) is the function (here: function 3) that is

started directly after ending the entry behavior (here: function 1).

Requirements Modeling | Handbook | © IREB 88 | 133

▪ A state can be exited through a transition only after the entry behavior

(here: function 1) has been fully executed.

▪ The initiation of function 4 by a trigger under an optional guard condition does not

lead to an external state change even if the behavior of a function (here: function 5) is

part of the list of deferred behaviors of the state.

Finding states

If the theoretical viewpoint from Section 4.4.4.2 is followed literally, in general, an object can

have many, sometimes even an infinite number of states. In order to reduce this number of

states to a reasonable level, two procedures are recommended:

▪ Omit attributes that are irrelevant for the state observation.

▪ Form equivalence classes of possible attribute values.

Looking at the example from the introduction, for the task in question we can consider

whether for the object car, the attribute color is relevant. If not, it does not have to be

included in the consideration of the state.

Figure 57: Definition of a car (c)

Equivalence classes are introduced to decide whether the possible values of the attributes

can be divided into certain areas. The object under investigation will behave in the same way

regardless of exactly which value is selected from a range of values of an attribute.

Therefore, it may seem appropriate to divide the mileage of a car into three areas: "low",

"medium", and "high". This reduces the number of theoretical states to a finite number.

Figure 58: Definition of a car (d)

Requirements Modeling | Handbook | © IREB 89 | 133

The number of the resulting states can be reduced further by grouping states into

technically useful groups.

When considering systems, states are identified by the following rule: system states differ

from each other by the fact that the system under development shows different behavior to

the outside depending on which state it is in. These differences are reflected mostly in the

fact that an actor will be able to use different features of the system based on the state it is

in.

4.4.4.2 Transitions

Syntax and semantics

In UML, a transition is represented by an arrow with an appropriate name. It connects an

initial state to a target state.

Figure 59: Notation of a transition

The naming of the edge consists of the following optional elements:

▪ Trigger: The trigger for the transition. The individual triggers are separated by

commas.

▪ Guard: A condition that must be true before the transition is executed upon receipt of

the trigger. The guard condition is listed in square brackets.

▪ Function: The function that is executed when passing through the transition.

Here, note that by definition, going through the transition must not consume any time.

Therefore, only "short" functions should be referenced (such as the starting or stopping of an

engine).

Normally, the output state is exited by going through a transition and then another state is

reached as the target state. However, it may be the case that the source and target state

are the same. This particular type of transition is referred to as a self-transition.

The transitions are triggered by a trigger and executed if the corresponding guard has a

value "true". Of course, this only applies if a guard is specified in the transition.

UML acknowledges numerous types of triggers. In requirements modeling, it is mainly the

following two types of trigger that occur:

▪ Signal trigger: A signal trigger is an incoming signal to the active state which triggers

the execution of a transition. Therefore, the terms "trigger" and "signal" are very often

used interchangeably.

▪ Time trigger: With a time trigger, you can trigger a transition at a certain time or after

a certain period of time. OMG UML/SysML use the keyword AFTER, which is listed

instead of the name of the transition.

Trigger [Guard]/Function

Requirements Modeling | Handbook | © IREB 90 | 133

In addition to being triggered by a trigger, a transition can be traversed without the trigger.

This is the case as soon as the guard is "true" if you have listed only a guard and no trigger on

the transition.

A guard can check the validity of certain values, such as "x = 5" or ranges of values "x> = 10",

as well as statements such as "x is located on the desktop" ("x" in this case can represent a

parameter that results from an operation or a signal. It can also be a system variable). It is

crucial that the guard represents a Boolean condition. The truth of this condition can be

evaluated at any time, that is, the condition has either "true" or "false" as a value at any time.

The receipt of a signal and the consequent triggering of a transition are executed only when

the object of observation is in a state which includes the signal as a trigger and the transition

leads away from it. If no such transition is defined for the current state, then the signal is

discarded. In the current state, this signal is defined as "to be delayed" (defer). The signal is

reset and once the next signal arrives, it will be used again.

Transitions provide a transition from a source to a target state. If two transitions have the

same initial state, they should be distinguished by different triggers or with the same trigger

but different guards. This is not a prerequisite, but it makes the execution of the resulting

state machine deterministic.

Finding transitions

There are two different approaches for finding the transitions:

▪ Identification of transitions from outgoing states

▪ Identification of transitions from incoming signals

The first approach is very intuitive because you have already given some thought to the

identification of the states, why two states are to be differentiated, and when to switch from

one state to another. An example of this approach is when you examine the use cases you

have assigned to the states as functions. Is the postcondition formulated defined as a state?

If so, the transition should lead to that state because the system should take on exactly this

state (see also Section 4.2).

The second approach is more methodical. This is about whether and how the use case

responds to an external signal when the system is in a particular state. This is repeated for all

incoming signals and potentially for all states. This approach is more likely to be used in the

consideration of a more technical system, in which perhaps the interfaces are specified with

the external interfacing systems.

The second approach for finding transitions is also closely related to the modeling in the

scenario view (see Chapter 5). A message that is received from the object under

investigation will generally result in one or more state transitions during the processing of the

message. Therefore, modeling of the scenario view is also used to locate and verify the state

transitions in a state machine.

Requirements Modeling | Handbook | © IREB 91 | 133

4.4.4.3 Initial state

Syntax and semantics

Figure 60: Notation of an initial state

Whenever a state machine is started, the first transition is the transition that leads from an

initial state to a state. Because a system must always be in a certain defined state, the initial

state is also referred to as a "pseudo" state. The system is never in such a state at any point

in time. This means that no guard and no trigger may be listed on the output edge of an initial

state.

In addition to an initial state in a state machine, initial states can also exist in the composite

states. Section 4.4.4.5 looks at this subject matter in more detail.

Finding initial states

Each state machine should have exactly one initial state and finding it is not difficult. You

simply draw the first state that the system is to take after the start.

4.4.4.4 Final State

Syntax and semantics

Figure 61: Notation of a final state

If the final state is reached, the execution of the overall state machine is terminated. After

reaching the final state, no additional activities are executed. Therefore, there can be no

outgoing pointer from final states. Technically, the final state can be seen as the end of the

life cycle for the modeled object under investigation.

Finding final states

At this point, we have to consider and analyze in detail the specific features of the object

under investigation. Which of the life cycles is relevant for meeting your requirements?

Requirements Modeling | Handbook | © IREB 92 | 133

For example, if software is considered solely while it is being run, then exiting the software

equates to the final state. However, if we are considering an embedded system over the entire

period in which it is "built" into its environment, no final state is needed because the system may

never terminate (see also the example in Section 4.4.3).

In addition, final states also exist in the composite states, which are presented in the next

section.

4.4.4.5 Composite state

Composite states are composed of one or more states.

Syntax and semantics

Figure 62: Notation of a composite state

The states included in a composite state are referred to below as substates. All types of

states are possible as substates of a composite state. This means that in addition to the

simple states and pseudo-states, you can also use a composite state. This allows you to

define a hierarchy of states. The leaves in the resulting state tree are the simple states; the

inner nodes are composite states.

Figure 63: Hierarchical states

State Machine

Composite State

Simple State

Requirements Modeling | Handbook | © IREB 93 | 133

The root of the state tree is an exception because in a fully defined model, it always

represents a state machine. It describes the behavioral description of the object under

observation as it is seen from the outside.

As described in Section 4.4.2 above, one state must be active in a state machine. This rule

must be met at all times. If the state is a composite state, one of its substates is active. Since

this substate may in turn be a composite state, the definition of the active states continues

downwards in the hierarchy until a simple state can be referred to as the active one.

Entering composite states

The possibilities for entering a composite state are described in the following figure.

Figure 64: Entry into composite states

Semantics when entering composite states:

▪ Default entry (trigger T1): If state A is entered starting from state B, the start node is

passed through and the active state is A.1.

▪ Explicit entry (trigger T2): If state A is entered starting from state C, the starting node

is not passed through and the state A.2 is entered directly.

Modeling provides the history construct as another possibility for entering composite states.

Figure 65: Shallow history

Requirements Modeling | Handbook | © IREB 94 | 133

If the state "Operating modes car radio" is entered, the state which was active the last time

this state was exited becomes active again. It is only in the special case of the first-time

entry (i.e., no is history available) that the "Radio mode" is active. In the picture, the "Shallow

history" is represented by H.

If there is a deeper hierarchy of composite states, the "Deep history" may be used. This not

only remembers the substate of the upper level but also ensures that all nested substates

(down to the leaf level) are remembered. This deep history is represented by H*.

Figure 66: Deep history

Exiting composite states

There are also different ways to exit composite substates.

Figure 67: Exiting composite states

Exiting a composite state:

▪ Reaching the final state (trigger T2): There must be a transition from state A without

a trigger which is executed. The next active state is F.

▪ Transition of a substate (trigger T4): This corresponds to the logical semantics: if A.1

is active and signal T4 is received, state E becomes active.

Requirements Modeling | Handbook | © IREB 95 | 133

▪ Transition of the composite state (trigger T3): Regardless of which substate is active

(A.1 or A.2), as soon as the trigger T3 occurs, state A is exited. The strength of this

modeling construct is demonstrated here. A state hierarchy emphasizes abstraction

as a technique for coping with complexity because the behavior on the upper level is

defined completely independently of the situation within A.

Finding composite states

Using composite states becomes easy with the following rule: if the system should exhibit

similar behavior (exiting the state, calling functions) in several different states, these states

may be combined into a composite state. However, it is not permissible for one state to

belong to several different composite states. In this case, you have to determine (based on

application logic) how to resolve this conflict.

In general, however, composite states arise relatively naturally when we look at the modes of

the application. For example, a fan has two states at the upper level: "on" and "off". The "on"

state can then be subdivided further based on the chosen speed (slow, fast).

Figure 68: States of a fan

4.4.4.6 Substate machine

Syntax and semantics

A substate machine is represented as a simple state. However, there are two possible

extensions to a simple state. The name of the substate machine and the name of the state it

is associated with are separated by a colon. The other option is to put a shape that

resembles a pair of glasses at the bottom right.

Figure 69: Syntax of a substate machine

Requirements Modeling | Handbook | © IREB 96 | 133

With the introduction of the substate machine, the idea of hierarchical Statecharts, as

introduced by composite states, is continued. The lower-level states of a composite state

are shown graphically as a separate state machine (in a separate diagram). At a higher level,

the state machine is referenced via this substate machine.

In order to also use the transition mechanism described in Section 4.4.4.5 in substate

machines, entry and exit points are introduced. With these model elements, both an explicit

entry and a transition can be modeled in a substate. This continues the concept of

abstraction as described in Section 4.4.4.5.

Figure 70 shows the transformation from a composite state into a substate machine.

Figure 70: Use of entry and exit points

The left-hand part models a composite state; the right-hand part shows the use of a

substate machine. Note where the triggers T4 and T2 are listed in the solution on the right. An

example of the distribution of guards is given in the example section below.

Finding substate machines

For the identification of substate machines, the same heuristic can be applied as is used in

identification of composite states (described in Section 4.4.4.2). In addition, note that

multiple abstract state machines can be used in one substate machine. The diagrams can be

made clearer using this concept.

Requirements Modeling | Handbook | © IREB 97 | 133

Example:

As an example of this type of reduction of the complexity, the state machine of a fan is shown

with an abstract state machine and a refinement of the state "On".

Figure 71: State machine of a fan

Figure 72: Hierarchical states of a fan

4.4.4.7 Orthogonal Regions

Using orthogonal regions, it is possible to define two or more parts of a state machine that

can respond independently to events.

Requirements Modeling | Handbook | © IREB 98 | 133

Syntax and semantics

Figure 73: Syntax of orthogonal regions

A state can be divided into several orthogonal regions. Each region can have its own state

machine, similar to the composite states model. This allows the opportunity to reduce the

number of states if states can be distributed over several independent sets.

By way of explanation, let us look at the following example of an infotainment system which

offers both a radio and a navigation system (see Figure 74). After turning the infotainment

system on, the radio and the navigation can be switched to standby independently.

Furthermore, the navigation can be set to destination entry or to the route guidance.

Regardless of the navigation, the radio can be in radio mode or in CD changer mode.

These six possible states for the two parts would result in a total of nine substates (3 times 3,

this will become clearer later on), presuming the system is in the active mode (after

activation). Since each of the three states are independent of each other, the state active

can be split into two orthogonal regions. The following state machine shows the result of this.

Requirements Modeling | Handbook | © IREB 99 | 133

Figure 74: Orthogonal regions of an infotainment system

For the independence of the states, the following rules must apply:

▪ The behavior in a region is independent of the current state in the other region.

▪ Transitions across the boundaries of the regions are not allowed.

Note that even with the use of orthogonal regions, the paradigm mentioned in Section 4.4.2

is not violated. The system is still in exactly one state at any time but the state results from

the combination of the active states in the individual regions.

The example given above uses one possibility for exiting the active state just as in the

composite states. For entering the active state, the modeling construct of parallelization is

used to express which two substates the system should adopt at the same time. In addition

to these options, there is a variety of other entry and exit options. For a complete overview,

see [BoRJ2005].

The following figure shows the state machine of Figure 74. We can clearly see that from the

six states modeled, nine states are now being derived. The number of transitions increases

even further.

Requirements Modeling | Handbook | © IREB 100 | 133

Figure 75: Resolved orthogonal regions

Finding orthogonal regions

Finding regions and recognizing that orthogonal regions can be formed is not always easy. It

is good practice to start modeling without orthogonal regions. When the state machine

becomes too complex, check whether perhaps the names of the states indicate certain

orthogonal regions. In many cases, an indication for those regions is that parts of a state

(refinement) are discussed in several independent parts of the state machine.

4.4.5 Typical state machines/modeling scenarios

4.4.5.1 Generic state machines for technical systems

The following figure shows a generic solution which can serve as a template for state

machines of technical systems.

Requirements Modeling | Handbook | © IREB 101 | 133

Figure 76: Generic state Machine of a technical system

In this machine, the two states "Diagnosis Mode" and "Operational Mode" should be further

refined. However, these refinements are highly dependent on the system under

development, so no further statements about the form of these states can be taken at this

point.

Even more states can be integrated in this state machine if required. In infotainment systems

in the automotive industry, for instance, a "Driving Mode" can be defined in which the system

does not accept inputs. This state would be parallel to the "Diagnosis Mode" and

"Operational Mode".

4.4.5.2 States of Objects of a Business-Oriented System

As a typical example of the states of an object in a business-oriented system, we will use the

object request for leave. Figure 77 shows the state machine of this object, whereby the full

definition of triggers, guards, and functions is omitted:

Requirements Modeling | Handbook | © IREB 102 | 133

Figure 77: States of a request for leave

As we can see in the machine, the states of the object correspond to time periods in which

the request for leave is stable (for some time). This also corresponds to the possible stages

of processing by use cases because a use case contains a complete interaction between an

actor and the system. As a result, the states of the request for leave must be stable after a

use case is completed. From a technical perspective, this means that this information must

be stored in the database so that the logical implementation knows which steps are allowed

for a specific request for leave.

The close relationship between the states and the use cases for processing such a request

for leave can be expressed in another way: the states of the object specify the

postconditions that have been defined in a use case.

Requirements Modeling | Handbook | © IREB 103 | 133

4.5 Further reading

Data flow perspective

▪ DeMarco, Tom: Structured Analysis and System Specification, Yourdon Press,

Prentice Hall, 1979

Control flow perspective—in particular, activity diagrams

▪ Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference

Manual, Addison Wesley, 2004

▪ Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide.

Addison-Wesley 2005.

Use case modeling and specification

▪ Jacobson, I.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software

Engineering – A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

▪ Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference

Manual, Addison Wesley, 2004.

▪ Cockburn, Alistair: Writing Effective Use Cases, Addision Wesley, 2000.

State perspective

▪ Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference

Manual, Addison Wesley, 2004

Requirements Modeling | Handbook | © IREB 104 | 133

5 Scenario modeling

Today, scenarios are an essential tool in requirements engineering, for example, to specify

the system vision and goals of stakeholders or to describe the added value created for the

users of the system. Scenarios have the character of examples which look at the use of the

system under development by humans or other systems (see, e.g., [Caro1995]).

Besides their use for the exemplary description of the use of the system under development,

scenarios can also be used to specify functional requirements precisely. In this case, in the

associated scenario view, all the scenarios that occur in the system usage are specified at a

high level of precision—for example, through UML sequence diagrams or Message Sequence

Charts according to the ITU standard [ITU2004].

5.1 Purpose

Since the early 1990s, scenarios have been used in requirements engineering to support the

systematic specification of requirements (see, e.g., [Pott1995]). If the starting point for

requirements engineering is the raw system vision or the goals of the stakeholders, in many

cases it is difficult to immediately specify the requirements of the system completely and

correctly based on that vision or those goals (see, e.g., [DaLF1993]).

This key insight led to the use of scenarios in requirements engineering. Scenarios focus on

the interaction-based view which is a specific behavioral view of the functional requirements

of the system. In this view, the behavior of the system is described by sequences of

interactions between communication partners. In the center of the interaction-based view

are the communication partners that represent either systems or individuals in the system

context or the system under development, and the interactions between these

communication partners.

An interaction between communication partners is a sequence of messages exchanged

between these partners. These messages can be information or data that is exchanged via

communication channels between the communicating actors. Moreover, requirements

engineering also considers messages in the form of tangible flows between communication

partners in interactions, for example, a material flow or cash flow between communication

partners.

A scenario is an interaction between communication partners (often between the system

under development and actors in the system context) that leads to a desired (or possibly

undesired) result. Scenario modeling is often used to specify the system vision and goals of

stakeholders with regard to the desired use of the system. Scenario modeling is not normally

limited to only the interface of the system under development in the form of the direct

message exchange between actors and the system but also considers messages that are

exchanged between actors in the system context. Thus, scenario modeling is not only the

modeling of the requirements of the system under development, but also the interaction

context of messages which are exchanged between actors and the system under

development.

Requirements Modeling | Handbook | © IREB 105 | 133

In requirements engineering, the added value to an actor in the system context is often seen

as an essential result of a scenario. The following example illustrates a simple scenario

described in natural language which documents an interaction between a person (John) and

an online store so that John can make a purchase.

Example Scenario "Shopping in an online shop":

In the product catalog of the online shop, John chooses the desired products and then confirms

that he would like to finalize the purchase. The online shop shows John the selected products

including the quantity and price and the total of the purchase. The online shop asks John to

confirm the purchase.

After John has confirmed the purchase, the online shop asks for the shipping address. John

enters the desired shipping address and confirms it. After confirmation of the shipping address,

the online shop asks John for the payment information. John enters the payment details and

confirms them.

The online shop then displays the complete order including shipping address and payment

details and asks John to confirm this order. John confirms the order, whereupon the online shop

displays an order confirmation.

The associated added value that the actor (John) gets through the use of the online shop is

that John can order the desired products via the Internet.

5.2 Relationship between scenarios and use cases

There are various types of scenarios in requirements engineering. An extensive analysis of

the different types of scenarios can be found in [RAC1998]. The following paragraph

presents two frequently found differentiations of scenarios and the related types.

One common differentiation of scenarios distinguishes between main scenarios, alternative

scenarios, and exception scenarios. This distinction is a key element of use case-based

approaches (such as [JCJO1992]), in which scenarios that relate to a specific added value

are grouped within a use case and are documented complementary to each other (see

Section 4.2.5). The use of main, alternative, and exception scenarios is not necessarily limited

to use case-based approaches.

▪ A main scenario is a scenario that describes a predominantly occurring sequence of

interactions to achieve a specific result (e.g., a specific added value).

▪ An alternative scenario is a scenario that describes an alternative sequence of

interactions to achieve the specific result in relation to a main scenario.

▪ An exception scenario is a scenario that describes a sequence of interactions that

must be executed if a defined exception event occurs. In requirements engineering,

exception scenarios are specified to handle exceptional situations in operations in a

controlled manner, often in addition to main and alternative scenarios.

In practice, the number of exception scenarios is in most cases considerably larger than the

number of alternative scenarios of a main scenario. This is because the exception scenarios

(and associated exception events) should preferably cover all situations that can occur

Requirements Modeling | Handbook | © IREB 106 | 133

during the execution of the main or alternative scenarios and that prevent a further

successful execution of the corresponding scenarios (or the associated use case, see

Section 4.2) in the operation of the system. Each exception scenario specifies a controlled

exception handling in response to a defined exception event.

5.3 Approaches to scenario modeling

The modeling of scenarios allows the documentation of extensive and complex situations

which involve the interaction-based behavior of the system in an easily understandable and

structured way. Diagram types that allow the documentation of an arrangement of

interactions between communication partners in visual form are particularly suitable for

modeling scenarios. Today, sequence diagrams are often used for modeling scenarios. In

sequence diagrams, the communication partners involved in the interaction sequence are

arranged in the horizontal dimension.

The interactions between the communication partners are modeled in the order of

appearance in the vertical dimension. In this way, scenarios from use cases can also be

specified in more detail through diagrams (see Section 4.2).

In the telecommunications industry, Message Sequence Charts (MSCs) of the International

Telecommunication Union (ITU) according to the standard ITU-T Z.120 [ITU2004] are used.

The high degree of formalization of MSCs offers far-reaching possibilities for automatic

processing such as quality inspection (e.g., to check freedom from contradictions and

completeness) or generative approaches for development.

The use of h (high-level) MSCS (similar to the interaction overview diagrams in UML 2) allows

appropriate structuring of extensive and complex models in the scenario view. The ITU-T

Z.120 standard came into force in 1992 and has been subject to continuous improvement

ever since. In particular, it has heavily influenced the sequence diagrams of UML

[OMG2010c, OMG2010b] and the sequence diagrams of SysML [OMG2010a].

The use of UML/SysML sequence diagrams has the advantage that UML and SysML are

much more widespread in practice than competing modeling approaches, such as those of

the ITU. Moreover, through the metamodel of UML/SysML, scenarios modeled in

UML/SysML sequence diagrams can be integrated with other views of requirements

modeling if UML or SysML diagram types are also used in these views.

Besides UML and SysML sequence diagrams, UML provides another diagram type,

communication diagrams, which also allows scenario modeling. Compared to sequence

diagrams, which focus primarily on the sequence of interactions between communication

partners, UML communication diagrams focus on the visualization of the bilateral

interactions between communication partners. The sequence of interactions is then

indicated by sequence numbers added to the interactions.

5.4 Simple examples of a modeled scenario

Figure 78 shows the modeling of a simple scenario in the form of a UML sequence diagram

(a) and a UML communication diagram (b).

Requirements Modeling | Handbook | © IREB 107 | 133

Figure 78: Modeling of a scenario with (a) sequence diagram and (b) communication diagram

Both diagrams model the scenario "Record navigation data". The name of the scenario is

specified in the upper part of the frame. The keywords "sd" and "cm" respectively designate

the diagram type used to model the corresponding scenario. In Figure 78, "sd" stands for

sequence diagram and "cm" for communication diagram.

The sequence diagram on the left of Figure 78 shows a sequence of interactions between

instances of the communication partners ":Driver", ":Nav" and ":MapServer" that must be

executed so that the driver can enter the navigation data in the navigation device. The

system under development is labeled with the stereotype <<SuD>> (system under

development) to make the separation between the system and the actors in the system

context clear.

As shown, in sequence diagrams the sequence of interactions is modeled in the vertical

dimension. In the horizontal dimension, the instances of the communication partners

involved in the given scenario are listed. The ":" in front of the name of the communication

partner indicates that it is a concrete instance. The arrowhead indicates the direction of the

message exchange.

The communication diagram on the right of Figure 78 also represents the scenario "Record

navigation data". In this diagram, however, the sequence of the interactions is not

documented in the vertical dimension but is instead annotated by specifying sequence

numbers for the interactions.

With a line between communication partners, the communication diagram visualizes the

existence of a direct communication relationship. The interactions occurring due to this

communication relationship are documented by messages. Each of these messages is

specified by a name, the associated sequence number of the message in the scenario, and

the direction of the message flow.

sd Record navigation data cm Record navigation data

:Driver :MapServer

Navigation request

Request destination

Route selection

Request routes

Destination

Selected route

Possible routes

Query route data

Route data

Display route data

Start navigation

Navigation started

:Driver

<<SuD>>

:Nav.

:MapServer

1:Navigation request

2:Request destination

3:Destination

4:Request routes

5:Possible routes

6:Route selection

7:Selected route

8:Query route data

12:Navigation started

9:Route data

10:Display route data

11:Start navigation

<<SuD>>

:Nav.

Requirements Modeling | Handbook | © IREB 108 | 133

In the visualization, communication diagrams place special emphasis on the communication

relationship between two communication partners. In contrast, the temporal or logical

sequence of interactions of scenarios is better visualized by sequence diagrams.

Due to the different priorities of the visualization, the requirements engineer must decide,

depending on the situation, which one of the two diagram types is most appropriate for the

respective use (↑ pragmatic quality).

If different uses are required, a scenario can be modeled in both diagram types. The

sequence diagram or the communication diagram could also be constructed automatically

from the diagram of the other diagram type. However, what is significant is that complex

interactions (e.g., the conditional repetition of messages or alternative messages) cannot be

represented by communication diagrams or only with a great deal of difficulty.

In the next section, the different model elements for scenario modeling with UML/SysML

sequence diagrams or UML communication diagrams are presented, including an

explanation of their specific relevance for modeling requirements. Further information about

the model elements of sequence diagrams and communication diagrams can be found in

[OMG2010b] or [OMG2010a].

5.5 Scenario modeling using sequence diagrams

Figure 79 shows the model elements of UML/SysML from OMG for sequence diagrams

which are used for modeling scenarios.

Figure 79: Model elements for scenario modeling using sequence diagrams

Name

Name of instance:
name of actor

Notation

Lifeline

sd Name
Frame

Basic modeling elements

Asynchronous
message exchange

Synchronous
message exchange

Activation

Termination

Advanced modeling elements

Combined fragments

Alternatives

Notation

alt [condition]

[┐condition]

Explanation Explanation

Sequence diagram frame

Life-line of an instance
of an actor in the scenario

Actor with activation
owns the control flow

Destruction of an instance
of an actor

Sending a message without
the sender waiting for
an answer

Optional

opt [condition]

Reference
ref

Name

Repetition

loop(0,m)

[condition]

Termination
break

[condition]

Modeling alternative interaction,
Depending on conditions

Modeling of an optional interaction,
depending on a condition

Modeling of a reference
to an interaction of another
sequence diagram

Repetition of the interaction,
m times or up to m times,
depending on the condition

Modeling of an interaction that
will be executed on occurrence
of a termination condition

Sending a message and the
sender waits for an answer

- Lost message

- Incoming message

Advanced message types

- Found message

- Outgoing message

Message of which the source/
receiver is unknown

External incoming, or
external outgoing message

ReceiverSender

ReceiverSender

Answer message

Time axis

Moment

Register

Register

Interaction frame

Name

Requirements Modeling | Handbook | © IREB 109 | 133

The left-hand panel of the figure presents the basic model elements, that is, those model

elements that are essential for modeling scenarios with sequence diagrams. The right-hand

panel of the figure shows the model elements that are used to model more extensive and

more complex interaction relationships between communication partners.

5.5.1 Basic model elements

5.5.1.1 Modeling the identifiability and referenceability of

a scenario

Sequence diagrams have an outer frame (interaction frame) which has the name of the

scenario that is modeled by the diagram in a register in the upper left area.

The name of the scenario has the prefix "sd", which, as already explained above, indicates

that the scenario is modeled by a sequence diagram. The use of frames means that the

scenario can be identified and referenced by name, which in particular supports the

management of different diagrams.

5.5.1.2 Modeling the communication partners of a scenario

A lifeline represents one instance of an actor within the scenario. The naming of the lifeline

follows the pattern instance name: type name (e.g., Peter: Driver). When modeling scenarios,

instance names are often omitted. However, instance names should be specified if it

improves the understandability of the modeled scenario.

If several instances of a certain communication partner are needed in one scenario, each

instance should be given a different instance name. This differentiation makes it clear that

two different instances of an actor of a scenario are involved and that there is a direct

message exchange.

The activation of a lifeline indicates that the respective communication partner has the

control in the visualized period within the scenario, that is, the communication partner

determines the control flow of the scenario. A termination in the lifeline of an instance

signifies the destruction of the corresponding instance of the actor. Figure 80 shows an

example of modeling a lifeline with activation and termination.

Figure 80: Modeling of lifelines and termination

Medcom1:MediaServer

EmpfängerSender

EmpfängerSender

Antwortnachricht

activation

Zeitpunkt

lifeline

termination

Requirements Modeling | Handbook | © IREB 110 | 133

5.5.1.3 Relationship of actors in scenarios to context

models and use case models

The actors in the scenarios are also visible in use case diagrams and the context diagrams of

the system, which means that the modeled scenarios can be integrated with the use case

diagrams of the use case view (cf. Section 4.2) and the context diagrams (cf. Section 2.2) via

the communication partners in the scenarios. Typically, the context diagrams are created

before the scenario modeling, which means that the actors and interfaces documented in

the context diagram can structure and guide the systematic creation of scenarios. Actors

that occur in the scenario modeling but cannot be found in the corresponding use case and

context diagrams indicate that the context and use case models are incomplete (cf. Section

4.2.3).

5.5.1.4 Modeling the message exchange within a scenario

The message exchange between two instances of communication partners within a scenario

is visualized by an arrow. The direction of the arrow indicates the direction of the message

exchange. There are two types of message exchange.

In an asynchronous message exchange between instances within the scenario, the

transmitter sends the message to the receiver and does not wait for a corresponding

response in the form of a message from the receiver. In scenario modeling, asynchronous

messages are used, for example, when an instance wants to send information to one or more

instances within the scenario and does not expect a response from the receiver.

In a synchronous exchange of messages between instances within a scenario, the sender of

the synchronous message waits for a response message from the receiver. One use of

synchronous messages in scenario modeling is when an instance within the scenario

requests information from another instance. An example of this would be the synchronous

message "Request personal identification number (PIN)" sent by the instance of an ATM to

the instance of a user. The ATM then waits for the user to enter the PIN, that is, to send a

response message with the PIN.

In scenario modeling in requirements engineering, the "message exchange" refers not only to

data that is transmitted through a communication infrastructure between communication

partners; a "message exchange" within a scenario may also represent the exchange of

tangible or intangible entities—for example, the insertion of a credit card (tangible entity) into

the ATM by the user.

Figure 81 shows an example for the modeling of both asynchronous and synchronous

messages.

Requirements Modeling | Handbook | © IREB 111 | 133

Figure 81: Modeling a) asynchronous and b) synchronous messages

Through message exchange, the sending communication partner can request a service from

another communication partner. Again, the service call can be asynchronous or

synchronous. With an asynchronous invocation of a service, the service is merely triggered

by a message, that is, the calling communication partner does not wait for an answer. With a

synchronous call, the transmitter waits for the corresponding response from the receiver

once he has requested the service from another communication partner through a message.

A service call can also include its signature, which means that input parameters (arguments)

and return parameters can be specified. Parameters are typically defined in the information

structure view, which creates a relationship (integration) between the scenario view and the

information structure view. Figure 81 also shows the use of the optional model element to

represent the activation of a communication partner.

Figure 82 shows an example of the modeling of a service call with incomplete and complete

parameters.

Figure 82: Modeling of a service call a) with incomplete and b) complete parameters

5.5.1.5 Relationship of messages in scenarios to state-

oriented modeling, data flow-oriented modeling, and

information structure modeling

The exchange of messages within a scenario represents the essential integration point to the

diagrams of other views of the requirements of the system under development (cf. Figure

83).

Medcom1:MediaServer

EmpfängerSender

EmpfängerSender

Antwortnachricht

Aktivierung

(a)

Lebenslinie

Termination

:Customer

New title

Medcom1:MediaServer :Customer

Request user name

(b)

User name

EmpfängerSender

EmpfängerSender

Antwortnachricht

Aktivierung
Termination

:MediaClient :MediaServer

CreateTitlelist(Startdate)

return Titlelist

:MediaClient :MediaServer

CreateTitlelist(…)

return

(a) (b)

Requirements Modeling | Handbook | © IREB 112 | 133

Figure 83: Messages in scenarios as an integration point with other requirement views

Relationship of messages to states in the state-oriented view

As shown in Figure 83 (a), both receiving and sending a message corresponds to a change in

the state of the actor. In Figure 83 (a), for example, receiving the message

"CreateTitlelist(Startdate)" corresponds with the state change of the communication

partner ":MediaServer" from the state "Wait for title request" to the state "Title request

received". Sending the message "return Titlelist" also results in a state change for

":MediaSever" (into the state "Title list sent").

At the same time, receiving this message results in a state change of ":MediaClient". The

states of the various communication partners of a scenario and the state transitions can be

modeled through diagrams of the state-oriented view, for example, through a UML state

diagram (see also Section 4.4).

Relationship of messages to functions/activities in the data flow-oriented or

control flow-oriented view

As shown in Figure 83 (b), there is a functional relationship between receiving a message and

subsequently sending a message based on the system under development. The reason for

this relationship is that the system has to execute a function based on the incoming message

and, where applicable, based on locally available information in order to create the result

message.

These functions (processes, activities) are typically modeled in the data flow-oriented or

control flow-oriented view: the data dependencies and control flow dependencies between

these system functions are modeled, for example, in one or more data flow diagrams and

activity diagrams (see also Section 4.3).

Relationship of messages to classes, attributes, and associations in the

information structure view

As shown in Figure 83 (c), the messages and any corresponding parameters are defined in

the information structure view of the requirements. The corresponding information is

specified, for example, in a class diagram which defines the information structure of the

messages in detail, including the technical relationships to other messages that are

:MediaClient :MediaServer

CreateTitlelist(Startdate)

Return Titlelist

State “Wait for title

request“

State “Title request

received“

A
State “Title list sent“

:MediaClient :MediaServer

CreateTitlelist(Startdate)

Return Titlelist

Function

“create Titlelist“

(b) Functions of :MediaServer(a) States of :MediaServer (c) Information structures

Titlelist

Title request

is result of

*

1

1..n

*

Startdate:

Title

ID:

Name:

Requirements Modeling | Handbook | © IREB 113 | 133

exchanged between the system under development and the actors in the system context

(see also Section 3).

5.5.2 Advanced model elements

The use of combined fragments allows us to model large and complex interaction-based

behavior in scenarios in an easily understandable way through sequence diagrams. UML or

SysML distinguish between a number of different types of combined fragments.

Below, five types of combined fragments are presented which are very suitable for modeling

large and complex interaction-based behavior in scenarios. Combined fragments are

modeled through interaction frames within a sequence diagram. The type of the combined

fragment and thus the corresponding meaning of the interaction within the combined

fragment in relation to the surrounding scenario are specified via a keyword in the register of

the combined fragment. In the vertical dimension of the sequence diagram (timing), the

interaction frame is typically extended as far as the specific interaction takes place over

time. In the horizontal dimension, the interaction frames of the combined fragments are

extended as far as to include all instances that exchange messages within the specific

interaction in the combined fragment.

5.5.2.1 Modeling alternative interactions of a scenario

("alt")

Alternative fragments are used to model alternative interaction sequences (i.e., an

alternative behavior) of a scenario. Within the sequence diagram, a corresponding

interaction frame is modeled with the keyword "alt" in its register.

The interaction frame is divided into two or more sections. For each of these sections, an

explicit Boolean condition must be specified that determines when ("when" in the sense of a

logical condition) the interaction in the corresponding section is executed. For one section,

the condition "else" can be given, thereby specifying that the corresponding interaction is

executed if none of the other conditions at the time of the potential entry into the combined

fragment are true.

If this section is omitted, no interaction is executed if none of the conditions are true when

the combined fragment is entered. The Boolean condition of each section is typically

modeled over the lifeline of the instance within the scenario that has access to the value

used to evaluate the Boolean condition. The Boolean condition can be arbitrarily arranged

over the lifelines if the values are global values.

In formulating the conditions for individual sections of the alternative interaction of the

scenario, it is important to make sure that they do not overlap from a logical point of view,

that is, no more than one condition is true when the combined fragment is entered. If this is

not the case, the associated scenario would have non-deterministic behavior (cf. Section

4.4). Figure 84 shows an example for the modeling of a combined fragment of the type

"alternative".

Requirements Modeling | Handbook | © IREB 114 | 133

Figure 84: Modeling of a combined fragment of the type "alternative"

5.5.2.2 Modeling optional interactions of a scenario ("opt")

Optional fragments are used to model optional interactions (i.e., optional behavior) of

scenarios. Within the sequence diagram, a corresponding interaction frame is modeled with

the keyword "opt" in its register. In the interaction frame, an explicit Boolean condition should

be specified that defines which condition must be true during the execution of the scenario

at the time of the potential entry into the combined fragment. The interaction modeled in the

optional fragment is then executed.

The Boolean condition is typically modeled over the lifeline of the instance within the

scenario which determines whether the corresponding condition is satisfied or not. If the

condition is not true at the time of the potential entry into the combined fragment, the

corresponding interaction (or the associated exchange of messages) does not take place

during the execution of the scenario. An optional combined fragment may be regarded as an

alternative combined fragment that has only one section with a corresponding condition.

Figure 85 shows an example of the modeling of a combined fragment of the type "optional".

Figure 85: Modeling of a combined fragment of the type "optional"

:Dispatcher

workstation

:On-Board-

System 1
:Dispatcher

:On-Board-

System 2

transportation damage message

damage info

damage info

transportation damage message

[electronic message]

[manual message]

alt

<<SuD>>

:Dispatcher

workstation

:Customer

Replacement transport data

Confirmation replacement transport data

<<SuD>>

opt [Premium customer]

Requirements Modeling | Handbook | © IREB 115 | 133

5.5.2.3 Modeling abstractions of interaction sequences of a

scenario ("ref")

Sequence diagrams provide the ability to abstract from combined interaction sequences of

a scenario by referring, at the appropriate position in the sequence diagram, to another

sequence diagram which models the corresponding interaction of the scenario. For this

purpose, a combined fragment is modeled in the sequence diagram at the position at which

the abstracted interaction occurs. The combined fragment is then characterized in its

register with the keyword "ref".

The name of a scenario is specified in the center of the fragment. This is the scenario which

contains the detailed interaction which, during the execution of the parent scenario, is

integrated into the interaction of the scenario at the position indicated by the combined

fragment. The use of combined fragments of this type is particularly appropriate when large

or complex interaction behavior of a scenario has to be modeled.

This allows the requirements engineer to extract technically connected interactions of a

complex scenario into a separate sequence diagram. The use of combined fragments of the

type "reference" is also appropriate if certain interactions (such as the interactions to

authenticate a user on the system) occur in an identical manner in several scenarios.

When modeling interaction sequences in separate sequence diagrams which are referred to

in other sequence diagrams by a combined fragment of the type "reference", the

requirements engineer must ensure that the partial scenario that will be included is

compatible with the parent scenario. For example, no instances that do not occur in the

parent scenario or in the corresponding sequence diagram may occur in the partial scenario.

Figure 86 shows an example of the modeling of a combined fragment of the type

"reference".

Figure 86: Modeling of a combined fragment of the type "reference"

5.5.2.4 Modeling repetitions of interactions within a

scenario ("loop")

To express repetitions of interactions within a scenario, a corresponding interaction frame is

modeled within the sequence diagram with the keyword "loop" in its register. In combined

fragments of this type, the number of repetitions is specified either by loop ([number]) or

by loop ([min, max]) with a lower (min) and an upper (max) limit on the number of

repetitions.

:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance
:Customer

:Fleet

management
:Dispatcher

:On-Board-

System 2

Provide replacement vehicle

<<SuD>>

ref

Requirements Modeling | Handbook | © IREB 116 | 133

In the latter case, the limits for the repetition specify that the interaction is repeated within

the interaction frame at least min and at most max times. In this case, the repetition of the

interaction within the interaction frame is also specified by a Boolean condition.

If the interaction within the interaction frame of the scenario is repeated min times, the

repetition is discontinued if the evaluation of the Boolean condition is false when re-entering

the interaction frame of the combined fragment.

If the Boolean condition is true for each entry into the interaction frame, the repetition of the

interaction is completed after max runs. Figure 87 shows an example of the modeling of a

combined fragment of the type "loop".

Figure 87: Modeling of a combined fragment of the type "loop"

5.5.2.5 Modeling the termination of a scenario ("break")

During the course of a scenario, situations may arise that prevent the successful execution

of the scenario. To represent the necessary exception handling from a technical point of

view in such cases, the interaction for the exception handling can also be modeled in

sequence diagrams. The termination fragment contains an optional Boolean condition and

an optional interaction that is executed to handle the termination if the condition for the

termination is true.

If no explicit termination condition is specified, the combined fragment only documents the

interactions that are executed if an unspecified termination condition is true. For the precise

specification of requirements, it is imperative, however, that the termination conditions are

explicitly documented. If a termination happens during the execution of a scenario, only the

interaction in the termination fragment is executed—that is, the execution of the scenario

ends after executing the interaction in the termination fragment. This happens even if there

are further interactions specified in the sequence diagram after the termination fragment.

These interactions are executed if the termination condition is not true during the execution

of the scenario.

If a termination fragment does not contain an interaction, the scenario ends right after the

termination condition is true. Figure 88 shows an example of the modeling a combined

fragment of the type "break".

:Dispatcher

workstation

:On-Board-

System 1

:On-Board-

System 2

Transportation documents

Acceptance

Loop(0,3) [Acceptance not successful]

<<SuD>>

Requirements Modeling | Handbook | © IREB 117 | 133

Figure 88: Modeling of a combined fragment of the type "break"

5.5.3 Nesting fragments

The use of combined fragments makes it possible to model several potential sequences of a

scenario in a single sequence diagram. This is particularly true if combined fragments are

nested. For example, the use of a single alternative fragment that includes three alternative

interaction sequences models results in three possible executions of the scenario.

In the case of an optional fragment, at least two potential executions of the scenario are

possible: one that occurs if the corresponding condition for the execution of the interaction

in the optional fragment is true, and another if the condition is false.

If one alternative within a combined fragment of the type "alternative" itself contains a

combined fragment of the type "optional", two potential sequences of the scenario are

possible with regard to the alternative interaction. In a similar way, this also applies to the

nesting of other types of fragments. Sequence diagrams that contain such combined

fragments therefore model several potential sequences of the corresponding scenario.

In this way, sequence diagrams can model related main, alternative, and exception scenarios

(termination scenarios) in an understandable way. In this case, main, alternative, and

exception scenarios are specified through a corresponding control flow of the scenario.

Figure 89 shows an example of the modeling of combined nested fragments.

Figure 89: Modeling of combined nested fragments

5.5.4 Modeling assumptions of a scenario

Scenarios are typically based on a number of assumptions whose validity is assumed so that

the scenario can actually be executed in the way it is modeled. If scenarios are modeled in

sequence diagrams, the assumptions can be specified as textual annotations that are linked

to the related model elements within the scenario. Figure 90 shows a simple example of the

modeling of assumptions on which a scenario is based.

:Dispatcher

workstation

:On-Board-

System 1

:Fleet

management
:Dispatcher

:On-Board-

System 2

[Vehicle not available]Break

Cancellation

<<SuD>>

:Dispatcher

workstation

:On-Board-

System 1

:Fleet

management
:Dispatcher

:On-Board-

System 2

<<SuD>>

[Vehicle not available]Break

Cancellation

Order cancellation

Acceptance

Loop(0,3) [Cancellation not successful]

Requirements Modeling | Handbook | © IREB 118 | 133

Figure 90: Modeling of assumptions for a scenario

The relationship between model elements of the sequence diagram and the associated

assumptions is shown via a directed dependency relationship with the stereotype

<<assumption>> (cf. Section 1.8). As shown in the figure, the assumptions can relate to the

entire scenario or to single model elements within the scenario. The statement of such an

assumption is, for example, that the scenario can only be completed successfully if

":MapServer" satisfies the related assumption.

This allows the exclusion of exception cases that do not contribute to the general

understanding of the scenario, for example.

5.6 Scenario modeling with communication diagrams

Figure 91 shows the model elements of UML communication diagrams which are used for

modeling scenarios. Communication diagrams also have an outer frame which contains the

name of the scenario modeled by the communication diagram in a register at the top left.

The name of the scenario typically has the keyword "cm" as a prefix, indicating that the

scenario is modeled by a communication diagram. A lifeline represents one instance of an

actor within the scenario. The naming of the lifeline follows the pattern instance name:type

name (e.g., Peter:Driver). A direct message exchange between two instances within the

scenario is modeled by a connecting line between these instances in the communication

diagram.

sd Record navigation data

:Driver :Map Server

Navigation request

Request destination

Route selection

Request routes

Destination

Selected route

Possible routes

Inquiry route data

Route data

Display route data

Start navigation

Navigation started

<<SuD>>

:Nav.

The map server is able to
determine various route options

The data connection between
:Nav. and :MapServer is

continuously available with
sufficient performance

(i.e. >1 Mbit/s).

:MapServer

Query route data

Requirements Modeling | Handbook | © IREB 119 | 133

Figure 91: Model elements of communication diagrams for modeling scenarios

Each message that is exchanged between instances within the scenario is annotated with a

message signature at the corresponding connecting line. The message signature consists of

the actual message and the sequence number of the message exchange in the scenario.

The direction of communication of a message is indicated by an arrow.

5.7 Examples of typical diagrams in the scenario view

With the help of various types of combined fragments, we can model complex interactions

between actors and between actors and the system under development. Table 4

summarizes typical uses of combined fragments in scenario modeling as well as the

consideration of scenarios within use cases.

Scenario level Scenarios at the use case level Fragment

Modeling of alternative sequences of

messages between communication

partners

Modeling of alternative extend

relationships between use cases at an

extension point

Alt

Modeling of optional messages

between communication partners

Modeling of individual extend

relationships between use cases that

do not consider exception handling

Opt

Abstraction of a combined sequence

of messages, e.g., for controlling

complexity and improving readability

Modeling of include relationships

between use cases

Ref

Name

:Name

Notation

Lifeline

cm Name

Frame

Message exchange

Explanation

Frame of the communication

diagram

Lifeline of an actor

in the scenario

Direction of communication

Sequence number: messageMessage signature

Models a generic message

exchange between actors

Models the direction of

a message exchange

Each message in a scenario

is provided with a sequence

number corresponding to the

order of occurrence of

a message

Requirements Modeling | Handbook | © IREB 120 | 133

Scenario level Scenarios at the use case level Fragment

Modeling of repetitions of messages

between communication partners

within scenarios depending on

conditions

—

Loop

Modeling of exception handling in

scenarios

Exception handling via extend

relationships between use cases

Break

Table 4: Typical uses of combined fragments in modeling scenarios

This section illustrates the use of the above types of combined fragments in the context of

scenario modeling based on typical excerpts from the scenario view of a dispatcher’s

workstation in transport management.

5.7.1 Modeling scenarios using sequence diagrams

Figure 92 and Figure 93 show an excerpt from the scenario view for a dispatcher’s

workstation in the form of two UML/SysML sequence diagrams. The sequence diagram

shown in Figure 92 illustrates the scenario "Provide replacement vehicle", which models the

interaction between the instances : On-Board System 2, :On-Board System 1,

:Dispatcher Workstation, :Dispatcher, :Fleet Management and: Order acceptance.

These interactions have to take place so that a replacement vehicle can be provided. The

dispatcher workstation represents the software system under development; the other

communication partners in the scenario are instances of actors in the system context.

The scenario shown uses both basic model elements for scenario modeling with UML/SysML

sequence diagrams and advanced model elements: two repetition fragments (keyword

"loop") and a termination fragment (keyword "break"). The first repetition fragment models

that the dispatcher workstation attempts to send the transport documents a maximum of

three times. After the dispatcher workstation sends the transport documents, it waits for the

acceptance by the on-board system of the replacement vehicle (i.e., a synchronous

message). This interaction is executed as long as the condition "Acceptance not successful"

is true.

If the condition is false when entering the combined fragment, the corresponding interaction

in the combined fragment is no longer executed. The dispatcher workstation sends the

asynchronous message "Vehicle selection" to the dispatcher.

Requirements Modeling | Handbook | © IREB 121 | 133

Figure 92: Example of a scenario modeled through a sequence diagram

The termination fragment models that if the condition "Vehicle not available" is true, an

asynchronous message is sent from the dispatcher workstation to the dispatcher. It also

models the interaction to cancel the order between the dispatcher workstation and the on-

board system, which is repeated a maximum of three times.

If the condition "Cancelation not successful" is true when entering this fragment (i.e., the

cancelation was unsuccessful), the interaction within the repetition fragment is no longer

executed. If the termination fragment was entered, the scenario terminates after the

execution of the interaction within the termination fragment, meaning that the asynchronous

message "Dispatch data" is no longer sent from the dispatcher workstation to the order

acceptance.

Figure 93 illustrates the sequence diagram that models the scenario "Replacement order for

transport damage". It shows the interaction between the instances :On-Board System 2,

:On-Board System 1, :Dispatcher Workstation, :Dispatcher, :Fleet Management,

:Order Acceptance and Customer, which has to take place so that a substitute delivery can

be notified in the case of transport damage. Various advanced model elements of scenario

modeling with sequence diagrams were used to model the scenario "Replacement order for

transport damage".

For example, the alternative fragment at the beginning models that if the electronic

message for transport damage occurs, the transport damage message is sent from the on-

board system of the vehicle to the dispatcher workstation which then sends a message

containing the damage information to the dispatcher.

sd Provide replacement vehicle

Request for vehicle

Available vehicles

Vehicle selection

Transportation documents

Acceptance

Info acceptance

Vehicle booking

Dispatch data

Loop(0,3) [Acceptance not successful]

[Vehicle not available]Break

Cancellation

Order cancellation

Acceptance

Loop(0,3) [Cancellation not successful]

:Customer:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance

:Fleet

management
:Dispatcher

:On-Board-

System 2

<<SuD>>

Requirements Modeling | Handbook | © IREB 122 | 133

Alternatively, the transport damage message can reach the dispatcher in other ways. In this

case, the message about damage that has occurred is sent directly to the dispatcher in

another way (→ Found message). The dispatcher then has to enter the necessary damage

information for further processing via the dispatcher workstation.

Figure 93: Example of a scenario modeled using a sequence diagram

The reference fragment in the lower part of the sequence diagram documents that at this

position in the sequence of the scenario, the interaction of the scenario "Provide

replacement vehicle" (Figure 92) is included. The optional fragment at the end of the

sequence diagram describes that, within the scenario, the dispatcher workstation sends a

message with the replacement transport data to the customer and waits for a confirmation.

However, this only occurs if the condition "Premium customer" is true, that is, if the transport

customer is a premium customer. If this is not the case, the scenario terminates at the end of

the interactions of the included scenario "Provide replacement vehicle".

5.7.2 Modeling Scenarios using Communication Diagrams

Figure 94 shows an excerpt from the scenario view for a dispatcher’s workstation in the form

of a UML communication diagram which models the scenario "Provide replacement vehicle"

(see also Figure 92). It is obvious from the figure that communication diagrams are hardly

suitable for modeling complex interaction-based behavior of scenarios since this diagram

type does not have model elements that allow the modeling of "optional" or "alternative"

interaction sequences of scenarios.

sd Replacement order for transport damage

Transport damage message

Damage info

Request cargo data

Request travel history

Request replacement order

Order data

ref
Provide replacement vehicle

opt [Premium customer]Replacement transport data

Damage info

Transport damage message

[Electronic message]

[Manual message]

Confirmation replacement transport data

alt

:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance
:Customer

:Fleet

management
:Dispatcher

:On-Board-

System 2

<<SuD>>

Requirements Modeling | Handbook | © IREB 123 | 133

Moreover, communication diagrams do not have model elements that allow the abstraction

of parts of an interaction sequence by modeling these interactions in a different diagram to

which the parent diagram can reference.

Nevertheless, communication diagrams are advantageous if the focus is on the bilateral

exchange of messages between instances of a scenario.

Figure 94: Example of a scenario modeled using a communication diagram

If the requirements engineer wants to model a scenario which does focus on this bilateral

exchange of messages, the use of this type of diagram is beneficial. If necessary, sequence

diagrams may be used in addition to a communication diagram to model scenarios. This

might be the case, for example, if the focus is on modeling the properties of the bilateral

interfaces (human-machine and machine-machine) between the system under

development and the instances of actors.

:Dispatcher

workstation

:On-Board-

System 1

:Order

acceptance

:Fleet

management
:Dispatcher

:On-Board-

System 2

Provide replacement vehicle

Fahrzeugwahl

Info Annahme

Fahrzeugbuchung

Disponierungsdaten

[Fahrzeug nicht verfügbar]Break

Stornierung

Auftragsstorno

Annahme

Loop(0,3) [Storno erfolgreich]

1:Request vehicle

2:Available vehicles

3:Transportation documents

4:Acceptance

7:Vehicle booking

5:Vehicle selection

6:Info acceptance

8:Confirmation booking

9:Dispatch data

:Customer

Requirements Modeling | Handbook | © IREB 124 | 133

5.8 Further reading

Types of scenarios and their documentation

▪ Rolland, C.; Achour, C.; Cauvet, C.; Ralyté, J.; Sutcliffe, A.; Maiden, N.; Jarke, M.;

Haumer, P.; Pohl, K.; Dubois, E.; Heymans, P.: A Proposal for a Scenario Classification

Framework. In: Requirements Engineering, 3 (1998) 1, S.23-47

▪ Jacobson, I.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented Software

Engineering – A Use Case Driven Approach. Addison-Wesley, Reading, 1992.

Scenario modeling in requirements engineering

▪ Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques. Springer,

2010.

Modeling of sequence and communication diagrams

▪ Object Management Group: OMG Systems Modeling Language (OMG SysML)

Language Specification v1.2. OMG Document Number: formal/2010-06-02.

▪ Object Management Group: OMG Unified Modeling Language (OMG UML),

Superstructure, Language Specification v2.41.

▪ Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference

Manual, Addison Wesley, 2004.

Requirements Modeling | Handbook | © IREB 125 | 133

6 Glossary

This glossary is partly based ofn: Glinz, M.: A Glossary of Requirements Engineering

Terminology. Standard Glossary of the Certified Professional for Requirements Engineering

(CPRE) Studies and Exam, https://www.ireb.org/en/downloads/#cpre-glossary or

https://www.ireb.org/en/cpre/glossary/.

Action In requirements modeling, a function of the system that can-

not be decomposed any further from a requirements per-

spective; a primitive function.

Activity In requirements modeling, a complex function of the system

under development that, from a requirements perspective, can

be decomposed into further activities or actions.

Activity diagram A diagram type in UML which models the flow of actions in a

system or in a component, including data flows and areas

of responsibility where necessary.

Actor A person or a technical system in the context of a system which

interacts with the system under development.

Aggregation Special type of association for modeling part/whole relation-

ships.

Alternative scenario A scenario which describes an alternative sequence of inter-

actions, related to the basic scenario, for achieving the tech-

nical added value.

Association A relationship between model elements—for example, a rela-

tionship between ↑classes in a ↑class diagram.

Attribute A characteristic property of an ↑entity or an object. Attributes

are defined on a type level, that is, entity types (ER diagrams) or

classes (class diagram).

Main scenario A scenario which, in relation to a specific outcome (e.g., a spe-

cific added value), describes the predominantly occurring se-

quence of interactions for achieving this result.

Class Represents a set of ↑objects of the same kind by describing

the structure of the objects, the ways they can be manipulated,

and how they behave.

Class diagram A diagrammatic representation of a ↑class model or a part of a

class model.

Communication diagram A diagram for modeling the behavior in the interaction-related

↑view which considers a logically related set of ↑interactions

between objects and/or communication partners which fo-

cuses on the visualization of bilateral ↑interactions between

communication partners. The causal order of ↑interactions is

indicated here by sequence numbers.

Composition Special type of ↑association for modeling part/whole relation-

ships.

https://www.ireb.org/en/downloads/#cpre-glossary
https://www.ireb.org/en/cpre/glossary/

Requirements Modeling | Handbook | © IREB 126 | 133

Context diagram 1. A diagrammatic representation of a ↑context model.

2. In ↑Structured Analysis, the context diagram is the root of

the data flow diagram hierarchy.

Context view A ↑requirements view which focuses on the demarcation of the

↑system boundary from the ↑context, that is, on the consider-

ation of the ↑actors or neighboring systems of the ↑system

under development and the interfaces between the system and

these neighboring systems. In the context view, often only the

↑operational context of the system under development is

modeled by ↑context diagrams.

Control flow Temporal or logical sequence of, for example, ↑functions,

↑actions, or ↑activities.

Data flow Representation of information (in a ↑data flow diagram or ↑ac-

tivity diagram) that is exchanged between the ↑system context

and/or ↑functions of the ↑system. (Data in motion, inputs and

outputs of ↑functions).

Data flow diagram A diagram modeling the ↑functionality of a ↑system or com-

ponent using processes (also called activities), data stores, and

data flows. Incoming data flows trigger processes which then

consume the received data, transform it, read/write persistent

data held in data stores, and then produce new data flows

which may be intermediate results that trigger other processes

or final results that leave the system.

Data type Specification of a complex information structure for the defini-

tion of ↑attributes.

Diagram Graphical description of a coherent set of properties of the ob-

ject under consideration. Instance of a specific ↑diagram type.

Diagram type Defines a class of "similar" ↑diagrams and is defined by a

↑modeling language.

Event Timeless event that characterizes the occurrence of a condi-

tion, the termination of an ↑action or ↑activity, or the arrival of

a ↑data flow or message.

Exception scenario A ↑scenario describing a sequence of ↑interactions that must

be executed if a defined exception event has occurred during

operation of the ↑system. In requirements engineering, ↑ex-

ception scenarios are often specified complementary to the

↑main scenario and/or ↑alternative scenarios for the con-

trolled treatment of scenarios.

Function (of a system) In requirements models, a generic term for use cases, ↑activi-

ties, or ↑actions that are required in a requirements specifica-

tion for the ↑system.

Generalization A concept for the abstraction of common properties such as

↑classes, in which the common properties are merged into a

generalized concept and the differences are depicted in re-

spective specialized concepts.

Instance scenario A ↑scenario in which communication partners and interactions

are considered at the instance level.

Requirements Modeling | Handbook | © IREB 127 | 133

Interaction An interaction is a flow of tangible (e.g., money) or intangible

things (e.g., information) between two or more communication

partners.

Interaction-based view The interaction-based view is a special ↑dynamic view of the

↑requirements of the ↑system under development in which the

behavior is observed through interactions between communi-

cation partners.

Model Abstracting image of an existing reality or an example for a

planned reality (e.g., a system).

Model element An atomic component of a diagram or a textual supplement to

the requirements model. A model element typically represents

a single requirement for the system.

Modeling construct An atomic component of a diagram type (e.g., class, associa-

tion, state, or state transition).

Modeling language A ↑language for expressing ↑models of a certain type. May be

textual, graphic, symbolic, or a combination thereof.

Object An occurrence/instance of a class.

Operational context The part of the ↑system context with which the ↑system has a

functional interaction during operation—for example, users,

other systems, technical or physical processes, or business

processes.

Pragmatic quality Extent to which a ↑diagram/↑model serves its intended pur-

pose in terms of the adequacy of abstraction.

Pragmatics Part of the definition of a ↑modeling language which de-

scribes the intended use and possibly also describes the form

and specific purpose of abstraction in order to fulfill the in-

tended use as well as possible.

Process flow See Control flow

Requirements view Defines, for reasons of complexity control, a specific abstrac-

tion of the requirements of a system in which only certain facts

(e.g., ↑states and ↑state transitions of the system under devel-

opment) have been considered and others have deliberately

not been considered. Typically, the different views of the re-

quirements can be combined into an overall model of the re-

quirements.

Requirements model A ↑model that has been created with the purpose of specifying

↑requirements. Consists of diagrams of various requirements

views and textual additions.

Role Designation of a class from the perspective of the other ↑class

for an ↑association.

Scenario An ↑interaction between communication partners (often be-

tween the ↑system under development and ↑actors in the sys-

tem context) that leads to a desired (or possibly unwanted) re-

sult. In requirements engineering, the added value for an ↑actor

in the system context is often seen as an essential result of a

↑scenario.

Requirements Modeling | Handbook | © IREB 128 | 133

Semantics Part of the definition of a modeling language; defines

the general meaning of the notation elements (i.e., generally →

What is the meaning of a class in a class diagram? Not → What

is the meaning of the class "customer" in the class diagram?).

Semantic quality Extent to which a ↑diagram/↑model reflects the specific view

of the object under observation correctly and completely.

Sequence diagram A diagram type in ↑UML which models the interactions be-

tween a selected set of objects and/or ↑actors in the sequen-

tial order in which those interactions occur.

Signal An ↑event in or outside the system which is relevant to the

↑system under development.

State A state is a summary of certain conditions that apply during a

time interval for a ↑ system or subsystem.

State diagram The graphical representation of a state machine.

State machine Through a summary of ↑states and ↑transitions between these

states, a state machine describes the behavior or part of the

behavior of the object considered (e.g., an ↑actor, a ↑function,

a ↑use case, or the ↑system).

State machine diagram See ↑State diagram

Statechart See State machine

Syntactic quality Extent to which the ↑diagram/↑model satisfies the underlying

syntactic rules.

Syntax Part of the definition of a ↑modeling language that defines the

way the available notation elements in the modeling language

can be combined (the grammar).

System Entity with defined borders and an interface through which the

entity interacts with its environment (context). Typically con-

sists of a set of related components.

System boundary Demarcates the ↑system from its context (e.g., via responsibili-

ties and exclusions).

System context Aspects outside the system that are relevant for the definition

of the ↑requirements of a system and their relationships to

each other and to the system under development. The system

context includes the ↑operational context, that is, the part of

the environment with which the operational system is in a func-

tional interaction.

System environment See Operational context

System under development The system considered in the context of requirements engi-

neering or requirements modelling.

System under study A system to be considered or analyzed in the context of system

analysis. Not necessarily the object of development.

Transition A change from one ↑state to another initiated by a trigger.

Trigger The processing of a signal as an actuator for a transition.

Type scenario A scenario in which communication partners and interactions

(↑) are considered at the type level. Scenarios (↑) within a use

Requirements Modeling | Handbook | © IREB 129 | 133

case specification are often at the type level, that is, they con-

sider types of communication partners and types of interac-

tions.

Use case A description of the possible interaction between an actor and

the system which, when executed, yields an added value.

Use case diagram A diagram type of UML which allows the modeling of ↑actors

and ↑use cases of a system. The line between actor and use

case represents the ↑system boundary. Use case specification:

 The textual description of a use case.

Use case scenario A possible sequence (trace) of the interactions within a use

case. The possible sequences are represented by the main, al-

ternative, and exception scenarios of the use case.

View An abstract representation of the ↑system under develop-

ment, consisting of one or more ↑diagrams (with textual addi-

tions). Views can be disjoint or overlapping. Deliberate overlaps

are applied for quality assurance of the models (to produce

consistency by viewing the system from several perspectives).

Requirements Modeling | Handbook | © IREB 130 | 133

7 List of Abbreviations

AD Activity diagram

BPMN Business Process Modeling Notation

CM Communication diagram

CPRE Certified Professional for Requirements Engineering

CRM Customer relationship management

DFD Data flow diagram

EPC Event-driven process chain

ER Entity relationship

FMC Fundamental modeling concepts

IREB International Requirements Engineering Board

ISO International Organization for Standardization

IT Information technology

ITU International Telecommunication Union

OMG Object Management Group

RE Requirements engineering

SA Structured Analysis

SD Sequence diagram

SuD System under development

SuS System under development

SysML System Modeling Language

UML Unified Modeling Language

Requirements Modeling | Handbook | © IREB 131 | 133

8 References

[Balz2011] Balzert, H.: Lehrbuch der Objektmodellierung - Analyse und Entwurf mit der

UML 2, Spektrum Akademischer Verlag, Heidelberg 2011. (in German).

[BDH2012] Broy, M.; Damm, W.; Henkler, S.; Pohl, K.; Vogelsang, A.; Weyer, T.: Introduction

to the SPES Modeling Framework. In: Pohl, K.; Hönninger, H.; Achatz, R.; Broy,

M.: Model-Based Engineering of Embedded Systems, Springer, Heidelberg

2012.

[Caro1995] Carroll, J. M.: The Scenario Perspective on System Development. In: J. M.

Caroll (Hrsg.): Scenario-Based Design – Envisioning Work and Technology in

System Development, Wiley, New York, 1995, S. 1-17.

[Chen1976] Chen, P.: The Entity-Relationship Model: Towards a Unified View of Data, ACM

Transactions on Database Systems, 1976.

[CoNM1996] Coad, P.; D. North, D.; Mayfield, M.: Object Models: Strategies, Patterns, and

Applications, Prentice Hall, 1996.

[Cock2000] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Longman,

Amsterdam 2000.

[Cohn2002] Cohn, M.: User Stories Applied: For Agile Software Development, Addison

Wesley, 2002.

[DaLF1993] Dardenne, A.; Van Lamsweerde, A.; Fickas, S.: Goal-Directed Requirements

Acquisition. Science of Computer Programming, Vol. 20, No. 1-2, Elsevier

Science, Amsterdam, 1993, p. 3-50.

[DaTW2012] Daun, M.; Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Pohl, K.;

Hönninger, H.; Achatz, R.; Broy, M.: Model-Based Engineering of Embedded

Systems, Springer, Heidelberg 2012.

[Davi1993] Davis, A. M.: Software Requirements – Objects, Functions, States. 2nd Edition,

Prentice Hall, Englewood Cliffs, New Jersey 1993.

[DeMa1979] DeMarco, T.: Structured Analysis and System Specification, Yourdon Press,

Pentice Hall, 1979

[Fowl1996] Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley,

Reading, MA 1996.

[GaJV1996] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns - Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA 1994.

[GaSa1977] Gane, C.; Sarson, T.: Structured Systems Analysis – Tools & Techniques.

Improved System Technologies, New York 1977.

[Glin2011] Glinz, M.: A Glossary of Requirements Engineering Terminology. Standard

Glossary of the Certified Professional for Requirements Engineering (CPRE)

Studies and Exam, Version 1.1, May 2011.

Requirements Modeling | Handbook | © IREB 132 | 133

[HaCa1993] Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for

Business Revolution, Harper Business Essentials, 1993.

[HaHP2001] Hatley, D., Hruschka, P., Pirbhai, I.: A Process for System Architecture and

Requirements Engineering, Dorset House, 2001.

[Hare1987] Harel, D.: Statecharts – A Visual Formalism for Complex Systems. Science of

Computer Programming, Vol. 8, No. 3, 1987, p. 231-274.

[HKDW2012] Hilbrich, R.; Van Kampenhout, J. R.; Daun, M.; Weyer, T.: Modeling Quality

Aspects: Real-Time. In: Pohl, K.; Hönninger, H.; Achatz, R.; Broy, M.: Model-

Based Engineering of Embedded Systems, Springer, Heidelberg 2012.

[IEEE1471] IEEE Recommended Practice for Architectural Description of Software

Intensive Systems. IEEE Standard 1471-2000.

[ISO25010] ISO/IEC/IEEE Systems and Software Engineering – Systems and Software

Quality Requirements and Evaluation. ISO/IEC/IEEE Standard 25010:2011.

[ISO26702] ISO/IEC/IEEE Systems and Software Engineering – Application and

Management of the Systems Engineering Process. ISO/IEC/IEEE Standard

26702:2005.

[ISO29148] ISO/IEC/IEEE Systems and Software Engineering – Life Cycle Processes –

Requirements Engineering. ISO/IEC/IEEE Standard 29148:2011.

[ISO42010] ISO/IEC/IEEE Systems and Software Engineering – Architecture description.

ISO/IEC/IEEE Standard 42010:2011.

[ITU2004] International Telecommunication Union: ITU-T Z.120 Message Sequence Chart

(MSC), 2004.

[JCJO1992] Jacobson, I.; Christerson, M.; Jonsson, P.; Oevergaard, G.: Object Oriented

Software Engineering – A Use Case Driven Approach. Addison-Wesley,

Reading, 1992.

[LaSi1987] Larkin, J. H.; Simon, H. A.: Why a diagram is (sometimes) worth ten thousand

words. In: Cognitive Science, Vol. 11, 65-99.

[LiSS1997] Lindland, O. I.; Sindre, G.; Sølverg, A.: Understanding Quality in Conceptual

Modeling. IEEE Software, Vol. 22, No. 2, IEEE Press, 1994, 42-49.

[Mart1989] Martin, J.: Information Engineering, Book I – Introduction. Prentice Hall,

Englewood Cliffs 1989.

[McPa1984] McMenamin, S. M.; Palmer, J. F.: Essential Systems Analysis. Prentice Hall,

London 1984.

[Nuse2001] Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE

Computer, Vol. 34, No. 3, IEEE Computer Society, Los Alamitos, 2001, 115-117.

[OMG2012] OMG Object Constraint Language (OCL); Version 2.3.1; January 2012

https://www.omg.org/spec/OCL/2.3.1/PDF. Last visited April 2024.

https://www.omg.org/spec/OCL/2.3.1/PDF

Requirements Modeling | Handbook | © IREB 133 | 133

[OMG2010a] Object Management Group: OMG Systems Modeling Language (OMG SysML)

Language Specification v1.2. OMG Document Number: formal/2010-06-02.

[OMG2010b] Object Management Group: OMG Unified Modeling Language (OMG UML),

Superstructure, Language Specification v2.41.

[OMG2010c Object Management Group: OMG Unified Modeling Language (OMG UML),

Infrastructure, Language Specification v2.41.

[OMG2011] Object Management Group: OMG Business Process Model and Notation (OMG

UML), Language Specification v2.0.

[Pohl2010] Pohl, K.: Requirements Engineering – Fundaments, Principles, Techniques.

Springer, Heidelberg 2010.

[RuJB2004] Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language

Reference Manual, Addison Wesley, Reading, MA 2004.

[BoRJ2005] Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User

Guide. Addision Wesley, Reading, MA 2005.

[PoRu2011] Pohl, K.; Rupp, C.: Requirements Engineering Fundamentals - A Study Guide

for the Certified Professional for Requirements Engineering Exam -

Foundation Level - IREB compliant, RookyNook Computing, 2011.

[Pott1995] Potts, C.: Using Schematic Scenarios to Understand User Needs. In:

Proceedings of the ACM Symposium on Designing Interactive Systems –

Processes, Practices, Methods and Techniques (DIS’95), ACM, New York, 1995,

S. 247-266.

[RaJa2001] B. Ramesh, M. Jarke: Toward Reference Models for Requirements Traceability.

IEEE Transactions on Software Engineering, Vol. 27, No. 1, IEEE Press, 2001, S.

58-93.

[RiWe2007] Rinke, T.; Weyer, T.: Defining Reference Models for Modeling Qualities - How

Requirements Engineering Techniques can Help. In: Proc. of the 13th Intl.

Working Conf. on Requirements Engineering – Foundation for Software

Quality, Lecture Notes in Computer Science, 4542, Springer 2007.

[RoRo2006] Robertson, S.; Robertson, J.: Mastering the Requirements Process. 2nd edition,

Addison-Wesley, Amsterdam, 2006.

[RAC1998] Rolland, C.; Achour, C.; Cauvet, C.; Ralyté, J.; Sutcliffe, A.; Maiden, N.; Jarke,

M.; Haumer, P.; Pohl, K.; Dubois, E.; Heymans, P.: A Proposal for a Scenario

Classification Framework. In: Requirements Engineering, 3 (1998) 1, S. 23-47.

[RoSc1977] Ross, D. T.; Schoman, K.E.: Structured Analysis for Requirements Definition.

IEEE Transactions on Software Engineering, Vol. 3, No. 1, 1977, p. 6-15.

[Sche2000] Scheer, A.-W.: ARIS - Business Process Modeling. 3rd edition. Springer, Berlin

2000.

[ShMe1988] Shlaer, S.; Mellor, S.: Object-oriented Systems Analysis – Modeling the World in

Data. Prentice Hall, Englewood Cliffs 1988.

	1 Basic principles
	1.1 The benefits of modeling requirements
	1.2 Applications of requirements modeling
	1.2.1.1 Modeling requirements as a means of specification
	1.2.1.2 Modeling existing textual requirements for the purpose of testing
	1.2.1.3 Modeling existing textual requirements for clarity

	1.3 Terms and concepts in requirements modeling
	1.4 Requirements models
	1.4.1 Modeling languages for requirements modeling
	1.4.2 Requirements modeling versus system design
	1.4.2.1 Requirements diagrams and design diagrams in system analysis
	1.4.2.2 Relationship between requirements models and design models

	1.5 Views in requirements modeling
	1.5.1 Information structure view
	1.5.2 Dynamic view
	1.5.3 Quality view
	1.5.4 Constraints view

	1.6 Views of the dynamic view in requirements modeling
	1.6.1 Use case view (user functions and dependencies to the system context)
	1.6.2 Data flow-oriented view (system functions and data dependencies)
	1.6.3 Control flow-oriented view (process flow logic)
	1.6.4 State-oriented view (states and state changes)
	1.6.5 Scenario view (interaction sequences between actors and the system)

	1.7 Adapting modeling languages for requirements modeling
	1.8 Integrating textual requirements in the requirements model
	1.9 Documenting dependencies between model elements
	1.10 The benefits of requirements modeling
	1.11 The quality of requirements models
	1.12 Further reading

	2 Context modeling
	2.1 Purpose
	2.2 Context diagrams
	2.2.1 Basic elements of context diagrams
	2.2.2 Example of a context diagram
	2.2.3 Notation elements for modeling context diagrams with data flow diagrams
	2.2.4 Pragmatic rules for context modeling with data flow diagrams

	2.3 Other types of context modeling
	2.4 Further reading

	3 Information structure modeling
	3.1 Purpose
	3.2 Modeling information structures
	3.3 Simple example
	3.4 Modeling classes, attributes, and data types
	3.4.1 Classes
	3.4.1.1 Objects versus classes
	3.4.1.2 Syntax and semantics
	3.4.1.3 Heuristics for identifying classes
	3.4.1.4 Tangible and intangible objects
	3.4.1.5 Processes
	3.4.1.6 Roles
	3.4.1.7 Defining the meaning of terms

	3.4.2 Attributes
	3.4.2.1 Syntax and semantics
	3.4.2.2 Heuristics for determining attributes
	3.4.2.3 Class or attribute
	3.4.2.4 Information modeling for existing systems

	3.4.3 Data types
	3.4.3.1 Syntax and semantics
	3.4.3.2 Heuristics for determining data types

	3.4.4 Recommendations for modeling practice
	3.4.4.1 Modeling tip: attribute constraints and textual requirements
	3.4.4.2 Modeling tip: views of things
	3.4.4.3 Modeling tip: length vs. number of strings
	3.4.4.4 Outlook: specification with OCL

	3.5 Modeling relationships
	3.5.1 Simple relationships (binary associations)
	3.5.1.1 Syntax and semantics
	3.5.1.2 Heuristic for determining simple relationships

	3.5.2 Aggregation and composition
	3.5.2.1 Syntax and semantics
	3.5.2.2 Heuristics for determining aggregations

	3.5.3 Association classes
	3.5.3.1 Syntax und semantics
	3.5.3.2 Heuristics for identifying association classes

	3.5.4 Practical advice for information modeling
	3.5.4.1 Modeling tip: constraints of relationships and textual requirements
	3.5.4.2 Modeling tip: attribute or association
	3.5.4.3 Modeling tip: navigability vs. reading direction
	3.5.4.4 Modeling tip: different interpretation of multiplicities (versioning, historizing, dynamics)
	3.5.4.5 Outlook: specification with OCL

	3.6 Modeling generalizations and specializations
	3.6.1 Syntax and semantics
	3.6.2 Generalization sets and their constraints
	3.6.3 Heuristics for identifying generalizations
	3.6.3.1 Linguistic formulation
	3.6.3.2 Uniformity

	3.6.4 Recommendations for modeling practice

	3.7 Other modeling concepts
	3.7.1 Typical concepts and patterns of information structure modeling
	3.7.2 Derived associations
	3.7.3 Scope of generalization diagrams

	3.8 Further reading

	4 Dynamic views
	4.1 Dynamic views of requirements modeling
	4.2 Use case modeling
	4.2.1 Purpose
	4.2.2 Model elements for use case diagrams
	4.2.3 Use case diagrams and context diagrams
	4.2.4 Finding use cases
	4.2.4.1 Continuity of processes from system boundary to system boundary
	4.2.4.2 Pragmatic rules for the granularity of use cases: the 80-20 rule

	4.2.5 Specifying use cases
	4.2.6 Structuring Use Cases
	4.2.7 Packaging use cases
	4.2.8 Summary

	4.3 Data flow-oriented and control flow-oriented modeling of requirements
	4.3.1 Purpose/historic overview
	4.3.2 Requirements modeling with data flow diagrams (DFDs)
	4.3.2.1 Model elements of data flow diagrams
	4.3.2.2 The relationship between data flow modeling and use cases, control flow modeling, and information structure modeling

	4.3.3 Requirements modeling with activity diagrams (ADs)
	4.3.3.1 Model elements of activity diagrams
	4.3.3.2 Modeling object and data flows in activity diagrams and their relationship to information structure modeling
	4.3.3.3 Relationship of activity diagrams to use case and scenario modeling

	4.3.4 Decomposing or combining functions
	4.3.5 Textual function specifications
	4.3.6 Ensuring consistency between requirements at different abstraction levels
	4.3.7 Interruptible activity region and receiving/sending messages
	4.3.8 Comparison of data flow diagrams and activity diagrams in requirements modeling

	4.4 State-oriented modeling of requirements
	4.4.1 Purpose
	4.4.2 The term "state"
	4.4.3 A Simple Example
	4.4.4 Model elements of state machine diagrams
	4.4.4.1 Simple state
	4.4.4.2 Transitions
	4.4.4.3 Initial state
	4.4.4.4 Final State
	4.4.4.5 Composite state
	4.4.4.6 Substate machine
	4.4.4.7 Orthogonal Regions

	4.4.5 Typical state machines/modeling scenarios
	4.4.5.1 Generic state machines for technical systems
	4.4.5.2 States of Objects of a Business-Oriented System

	4.5 Further reading

	5 Scenario modeling
	5.1 Purpose
	5.2 Relationship between scenarios and use cases
	5.3 Approaches to scenario modeling
	5.4 Simple examples of a modeled scenario
	5.5 Scenario modeling using sequence diagrams
	5.5.1 Basic model elements
	5.5.1.1 Modeling the identifiability and referenceability of a scenario
	5.5.1.2 Modeling the communication partners of a scenario
	5.5.1.3 Relationship of actors in scenarios to context models and use case models
	5.5.1.4 Modeling the message exchange within a scenario
	5.5.1.5 Relationship of messages in scenarios to state-oriented modeling, data flow-oriented modeling, and information structure modeling

	5.5.2 Advanced model elements
	5.5.2.1 Modeling alternative interactions of a scenario ("alt")
	5.5.2.2 Modeling optional interactions of a scenario ("opt")
	5.5.2.3 Modeling abstractions of interaction sequences of a scenario ("ref")
	5.5.2.4 Modeling repetitions of interactions within a scenario ("loop")
	5.5.2.5 Modeling the termination of a scenario ("break")

	5.5.3 Nesting fragments
	5.5.4 Modeling assumptions of a scenario

	5.6 Scenario modeling with communication diagrams
	5.7 Examples of typical diagrams in the scenario view
	5.7.1 Modeling scenarios using sequence diagrams
	5.7.2 Modeling Scenarios using Communication Diagrams

	5.8 Further reading

	6 Glossary
	7 List of Abbreviations
	8 References

